↓ Skip to main content

Assessment of the predictive accuracy of five in silico prediction tools, alone or in combination, and two metaservers to classify long QT syndrome gene mutations

Overview of attention for article published in BMC Medical Genomics, May 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

news
1 news outlet
twitter
2 X users

Citations

dimensions_citation
76 Dimensions

Readers on

mendeley
101 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Assessment of the predictive accuracy of five in silico prediction tools, alone or in combination, and two metaservers to classify long QT syndrome gene mutations
Published in
BMC Medical Genomics, May 2015
DOI 10.1186/s12881-015-0176-z
Pubmed ID
Authors

Ivone US Leong, Alexander Stuckey, Daniel Lai, Jonathan R Skinner, Donald R Love

Abstract

Long QT syndrome (LQTS) is an autosomal dominant condition predisposing to sudden death from malignant arrhythmia. Genetic testing identifies many missense single nucleotide variants of uncertain pathogenicity. Establishing genetic pathogenicity is an essential prerequisite to family cascade screening. Many laboratories use in silico prediction tools, either alone or in combination, or metaservers, in order to predict pathogenicity; however, their accuracy in the context of LQTS is unknown. We evaluated the accuracy of five in silico programs and two metaservers in the analysis of LQTS 1-3 gene variants. The in silico tools SIFT, PolyPhen-2, PROVEAN, SNPs&GO and SNAP, either alone or in all possible combinations, and the metaservers Meta-SNP and PredictSNP, were tested on 312 KCNQ1, KCNH2 and SCN5A gene variants that have previously been characterised by either in vitro or co-segregation studies as either "pathogenic" (283) or "benign" (29). The accuracy, sensitivity, specificity and Matthews Correlation Coefficient (MCC) were calculated to determine the best combination of in silico tools for each LQTS gene, and when all genes are combined. The best combination of in silico tools for KCNQ1 is PROVEAN, SNPs&GO and SIFT (accuracy 92.7%, sensitivity 93.1%, specificity 100% and MCC 0.70). The best combination of in silico tools for KCNH2 is SIFT and PROVEAN or PROVEAN, SNPs&GO and SIFT. Both combinations have the same scores for accuracy (91.1%), sensitivity (91.5%), specificity (87.5%) and MCC (0.62). In the case of SCN5A, SNAP and PROVEAN provided the best combination (accuracy 81.4%, sensitivity 86.9%, specificity 50.0%, and MCC 0.32). When all three LQT genes are combined, SIFT, PROVEAN and SNAP is the combination with the best performance (accuracy 82.7%, sensitivity 83.0%, specificity 80.0%, and MCC 0.44). Both metaservers performed better than the single in silico tools; however, they did not perform better than the best performing combination of in silico tools. The combination of in silico tools with the best performance is gene-dependent. The in silico tools reported here may have some value in assessing variants in the KCNQ1 and KCNH2 genes, but caution should be taken when the analysis is applied to SCN5A gene variants.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 101 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 <1%
Sri Lanka 1 <1%
Belgium 1 <1%
Unknown 98 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 20%
Researcher 19 19%
Student > Master 11 11%
Student > Bachelor 8 8%
Professor > Associate Professor 5 5%
Other 14 14%
Unknown 24 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 34 34%
Medicine and Dentistry 14 14%
Agricultural and Biological Sciences 10 10%
Neuroscience 3 3%
Pharmacology, Toxicology and Pharmaceutical Science 2 2%
Other 9 9%
Unknown 29 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 September 2021.
All research outputs
#3,274,243
of 25,371,288 outputs
Outputs from BMC Medical Genomics
#178
of 2,444 outputs
Outputs of similar age
#40,479
of 279,140 outputs
Outputs of similar age from BMC Medical Genomics
#6
of 48 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,444 research outputs from this source. They receive a mean Attention Score of 4.4. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,140 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 85% of its contemporaries.