↓ Skip to main content

Identification of novel drugs to target dormant micrometastases

Overview of attention for article published in BMC Cancer, May 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of novel drugs to target dormant micrometastases
Published in
BMC Cancer, May 2015
DOI 10.1186/s12885-015-1409-4
Pubmed ID
Authors

Robert E. Hurst, Paul J. Hauser, Youngjae You, Lora C. Bailey-Downs, Anja Bastian, Stephen M. Matthews, Jessica Thorpe, Christine Earle, Lilly Y. W. Bourguignon, Michael A. Ihnat

Abstract

Cancer-specific survival has changed remarkably little over the past half century, mainly because metastases that are occult at diagnosis and generally resistant to chemotherapy subsequently develop months, years or even decades following definitive therapy. Targeting the dormant micrometastases responsible for these delayed or occult metastases would represent a major new tool in cancer patient management. Our hypothesis is that these metastases develop from micrometastatic cells that are suppressed by normal extracellular matrix (ECM). A new screening method was developed that compared the effect of drugs on the proliferation of cells grown on a normal ECM gel (small intestine submucosa, SISgel) to cells grown on plastic cell culture plates. The desired endpoint was that cells on SISgel were more sensitive than the same cells grown as monolayers. Known cancer chemotherapeutic agents show the opposite pattern. Screening 13,000 compounds identified two leads with low toxicity in mice and EC50 values in the range of 3-30 μM, depending on the cell line, and another two leads that were too toxic to mice to be useful. In a novel flank xenograft method of suppressed/dormant cells co-injected with SISgel into the flank, the lead compounds significantly eliminated the suppressed cells, whereas conventional chemotherapeutics were ineffective. Using a 4T1 triple negative breast cancer model, modified for physiological metastatic progression, as predicted, both lead compounds reduced the number of large micrometastases/macrometastases in the lung. One of the compounds also targeted cancer stem cells (CSC) isolated from the parental line. The CSC also retained their stemness on SISgel. Mechanistic studies showed a mild, late apoptotic response and depending on the compound, a mild arrest either at S or G2/M in the cell cycle. In summary we describe a novel, first in class set of compounds that target micrometastatic cells and prevent their reactivation to form recurrent tumors/macrometastases.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 35 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 22%
Student > Bachelor 6 17%
Student > Ph. D. Student 5 14%
Professor > Associate Professor 2 6%
Student > Master 2 6%
Other 5 14%
Unknown 8 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 31%
Medicine and Dentistry 5 14%
Biochemistry, Genetics and Molecular Biology 5 14%
Pharmacology, Toxicology and Pharmaceutical Science 4 11%
Physics and Astronomy 1 3%
Other 1 3%
Unknown 9 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 May 2015.
All research outputs
#13,942,329
of 22,803,211 outputs
Outputs from BMC Cancer
#3,193
of 8,297 outputs
Outputs of similar age
#133,518
of 264,461 outputs
Outputs of similar age from BMC Cancer
#87
of 224 outputs
Altmetric has tracked 22,803,211 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,297 research outputs from this source. They receive a mean Attention Score of 4.3. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,461 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 224 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.