↓ Skip to main content

Very small embryonic-like stem cells are involved in pancreatic regeneration and their dysfunction with age may lead to diabetes and cancer

Overview of attention for article published in Stem Cell Research & Therapy, May 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

blogs
1 blog
twitter
3 X users
patent
2 patents
facebook
1 Facebook page

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Very small embryonic-like stem cells are involved in pancreatic regeneration and their dysfunction with age may lead to diabetes and cancer
Published in
Stem Cell Research & Therapy, May 2015
DOI 10.1186/s13287-015-0084-3
Pubmed ID
Authors

Deepa Bhartiya, Hiren Patel

Abstract

Mouse pancreas has a remarkable ability to regenerate after partial pancreatectomy, and several investigators have studied the underlying mechanisms involved in this regeneration process; however, the field remains contentious. Elegant lineage-tracing studies undertaken over a decade have generated strong evidence against neogenesis from stem cells and in favor of reduplication of pre-existing islets. Ductal epithelium has also been implicated during regeneration. We recently provided direct evidence for the possible involvement of very small embryonic-like stem cells (VSELs) during regeneration after partial pancreatectomy in mice. VSELs were first reported in pancreas in 2008 and are mobilized in large numbers after treating mice with streptozotocin and in patients with pancreatic cancer. VSELs can be detected in mouse pancreas as small-sized LIN(-)/CD45(-)/SCA-1(+) cells (3 to 5 μm), present in small numbers (0.6%), which express nuclear Oct-4 (octamer-binding transcription factor 4) and other pluripotent markers along with their immediate descendant 'progenitors', which are slightly bigger and co-express Oct-4 and PDX-1. VSELs and the progenitors get mobilized in large numbers after partial pancreatectomy and regenerate both pancreatic islets and acinar cells. In this review, we deliberate upon possible reasons why VSELs have eluded scientists so far. Because of their small size, VSELs are probably unknowingly and inadvertently discarded during processing. Similar to menopause and related loss of ovarian function, type 2 diabetes mellitus occurs because of a decline in beta-cell function possibly resulting from an age-related compromised niche which does not allow VSELs to maintain normal homeostasis. As suggested earlier for ovarian cancers, the presence of Oct-4 and other pluripotent markers in pancreatic cancers is suggestive of VSELs as the possible cancer-initiating stem cells. Several issues raised in the review require urgent confirmation and thus provide scope for further research before arriving at a consensus on the fundamental role played by VSELs in normal pancreas biology and during regeneration, aging, and cancer. In the future, such understanding may allow manipulation of endogenous VSELs to our advantage in patients with diabetes and also to treat cancer.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 38 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 26%
Student > Master 8 21%
Researcher 7 18%
Student > Bachelor 5 13%
Professor > Associate Professor 2 5%
Other 3 8%
Unknown 4 10%
Readers by discipline Count As %
Medicine and Dentistry 12 31%
Biochemistry, Genetics and Molecular Biology 11 28%
Agricultural and Biological Sciences 6 15%
Immunology and Microbiology 2 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 2 5%
Unknown 5 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 15. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 October 2022.
All research outputs
#2,057,774
of 22,979,862 outputs
Outputs from Stem Cell Research & Therapy
#134
of 2,428 outputs
Outputs of similar age
#27,825
of 265,182 outputs
Outputs of similar age from Stem Cell Research & Therapy
#5
of 54 outputs
Altmetric has tracked 22,979,862 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,428 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,182 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 88% of its contemporaries.