↓ Skip to main content

The genetic architecture of growth and fillet traits in farmed Atlantic salmon (Salmo salar)

Overview of attention for article published in BMC Genomic Data, May 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

twitter
5 X users

Readers on

mendeley
104 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The genetic architecture of growth and fillet traits in farmed Atlantic salmon (Salmo salar)
Published in
BMC Genomic Data, May 2015
DOI 10.1186/s12863-015-0215-y
Pubmed ID
Authors

Hsin Yuan Tsai, Alastair Hamilton, Derrick R Guy, Alan E Tinch, Stephen C Bishop, Ross D Houston

Abstract

Performance and quality traits such as harvest weight, fillet weight and flesh color are of economic importance to the Atlantic salmon aquaculture industry. The genetic factors underlying these traits are of scientific and commercial interest. However, such traits are typically polygenic in nature, with the number and size of QTL likely to vary between studies and populations. The aim of this study was to investigate the genetic basis of several growth and fillet traits measured at harvest in a large farmed salmon population by using SNP markers. Due to the marked heterochiasmy in salmonids, an efficient two-stage mapping approach was applied whereby QTL were detected using a sire-based linkage analysis, a sparse SNP marker map and exploiting low rates of recombination, while a subsequent dam-based analysis focused on the significant chromosomes with a denser map to confirm QTL and estimate their position. The harvest traits all showed significant heritability, ranging from 0.05 for fillet yield up to 0.53 for the weight traits. In the sire-based analysis, 1695 offspring with trait records and their 20 sires were successfully genotyped for the SNPs on the sparse map. Chromosomes 13, 18, 19 and 20 were shown to harbor genome-wide significant QTL affecting several growth-related traits. The QTL on chr. 13, 18 and 20 were detected in the dam-based analysis using 512 offspring from 10 dams and explained approximately 6-7 % of the within-family variation in these traits. We have detected several QTL affecting economically important complex traits in a commercial salmon population. Overall, the results suggest that the traits are relatively polygenic and that QTL tend to be pleiotropic (affecting the weight of several components of the harvested fish). Comparison of QTL regions across studies suggests that harvest trait QTL tend to be relatively population-specific. Therefore, the application of marker or genomic selection for improvement in these traits is likely to be most effective when the discovery population is closely related to the selection candidates (e.g. within-family genomic selection).

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 104 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 2%
United Kingdom 1 <1%
Spain 1 <1%
Norway 1 <1%
Unknown 99 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 23 22%
Student > Ph. D. Student 22 21%
Student > Master 14 13%
Student > Postgraduate 6 6%
Student > Bachelor 5 5%
Other 14 13%
Unknown 20 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 64 62%
Biochemistry, Genetics and Molecular Biology 7 7%
Veterinary Science and Veterinary Medicine 2 2%
Environmental Science 2 2%
Medicine and Dentistry 2 2%
Other 2 2%
Unknown 25 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 January 2016.
All research outputs
#7,030,338
of 25,374,917 outputs
Outputs from BMC Genomic Data
#235
of 1,204 outputs
Outputs of similar age
#77,057
of 280,059 outputs
Outputs of similar age from BMC Genomic Data
#8
of 36 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 1,204 research outputs from this source. They receive a mean Attention Score of 4.3. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,059 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 77% of its contemporaries.