↓ Skip to main content

Construction of a virtual Mycobacterium tuberculosis consensus genome and its application to data from a next generation sequencer

Overview of attention for article published in BMC Genomics, March 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
65 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Construction of a virtual Mycobacterium tuberculosis consensus genome and its application to data from a next generation sequencer
Published in
BMC Genomics, March 2015
DOI 10.1186/s12864-015-1368-9
Pubmed ID
Authors

Kayo Okumura, Masako Kato, Teruo Kirikae, Mitsunori Kayano, Tohru Miyoshi-Akiyama

Abstract

Although Mycobacterium tuberculosis isolates are consisted of several different lineages and the epidemiology analyses are usually assessed relative to a particular reference genome, M. tuberculosis H37Rv, which might introduce some biased results. Those analyses are essentially based genome sequence information of M. tuberculosis and could be performed in sillico in theory, with whole genome sequence (WGS) data available in the databases and obtained by next generation sequencers (NGSs). As an approach to establish higher resolution methods for such analyses, whole genome sequences of the M. tuberculosis complexes (MTBCs) strains available on databases were aligned to construct virtual reference genome sequences called the consensus sequence (CS), and evaluated its feasibility in in sillico epidemiological analyses. The consensus sequence (CS) was successfully constructed and utilized to perform phylogenetic analysis, evaluation of read mapping efficacy, which is crucial for detecting single nucleotide polymorphisms (SNPs), and various MTBC typing methods virtually including spoligotyping, VNTR, Long sequence polymorphism and Beijing typing. SNPs detected based on CS, in comparison with H37Rv, were utilized in concatemer-based phylogenetic analysis to determine their reliability relative to a phylogenetic tree based on whole genome alignment as the gold standard. Statistical comparison of phylogenic trees based on CS with that of H37Rv indicated the former showed always better results that that of later. SNP detection and concatenation with CS was advantageous because the frequency of crucial SNPs distinguishing among strain lineages was higher than those of H37Rv. The number of SNPs detected was lower with the consensus than with the H37Rv sequence, resulting in a significant reduction in computational time. Performance of each virtual typing was satisfactory and accorded with those published when those are available. These results indicated that virtual CS constructed from genome sequence data is an ideal approach as a reference for MTBC studies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 1 2%
Unknown 64 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 17 26%
Researcher 13 20%
Student > Ph. D. Student 8 12%
Other 4 6%
Lecturer 3 5%
Other 9 14%
Unknown 11 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 16 25%
Agricultural and Biological Sciences 15 23%
Computer Science 7 11%
Medicine and Dentistry 5 8%
Immunology and Microbiology 5 8%
Other 3 5%
Unknown 14 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 April 2015.
All research outputs
#14,162,198
of 22,805,349 outputs
Outputs from BMC Genomics
#5,662
of 10,650 outputs
Outputs of similar age
#137,711
of 262,934 outputs
Outputs of similar age from BMC Genomics
#154
of 283 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,650 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 262,934 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 283 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.