↓ Skip to main content

Coexpression of gene Oct4 and Nanog initiates stem cell characteristics in hepatocellular carcinoma and promotes epithelial-mesenchymal transition through activation of Stat3/Snail signaling

Overview of attention for article published in Journal of Hematology & Oncology, March 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
137 Dimensions

Readers on

mendeley
80 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Coexpression of gene Oct4 and Nanog initiates stem cell characteristics in hepatocellular carcinoma and promotes epithelial-mesenchymal transition through activation of Stat3/Snail signaling
Published in
Journal of Hematology & Oncology, March 2015
DOI 10.1186/s13045-015-0119-3
Pubmed ID
Authors

Xin Yin, Bo-Heng Zhang, Su-Su Zheng, Dong-Mei Gao, Shuang-Jian Qiu, Wei-Zhong Wu, Zheng-Gang Ren

Abstract

Oct4 and Nanog are key regulatory genes that maintain the pluripotency and self-renewal properties of embryonic stem cells. We previously reported that the two stemness markers were tightly associated with cancer progression and poor outcomes of hepatocellular carcinoma. In this study, we demonstrate that coexpression of Oct4/Nanog modulates activation of signal transducer and activator of transcription 3 (Stat3), an oncogenic transcription factor that is activated in many human malignancies including hepatocellular carcinoma (HCC), as well as the expression of Snail, a key regulator implicated in epithelial-mesenchymal transition and tumor metastasis. Oct4 and Nanog were ectopic expressed in MHCC97-L cell lines via lentiviral gene transfection. The stemness characteristics including self-renewal, proliferation, chemoresistance, and tumorigenicity were assessed. The effect of coexpression of Oct4 and Nanog on epithelial-mesenchymal transition change, and the underlying molecular signaling was investigated. Ectopic coexpression of Oct4 and Nanog empowered MHCC97-L cells with cancer stem cell (CSC) properties, including self-renewal, extensive proliferation, drug resistance, and high tumorigenic capacity. Significantly, Oct4 and Nanog encouraged epithelial-mesenchymal transition change contributing to tumor migration, invasion/metastasis in vitro and in vivo. Following molecular mechanism investigation indicated Oct4/Nanog-regulated epithelial-mesenchymal transition change through Stat3-dependent Snail activation. Moreover, silencing Stat3 abrogates Oct4/Nanog-mediated epithelial-mesenchymal transition (EMT) change and invasion/metastasis in HCC. We delineate Oct4 and Nanog initiate stem cell characteristics in hepatocellular carcinoma and promote epithelial-mesenchymal transition through activation of Stat3/Snail signaling. Our findings propose Stat3/Snail pathway as a novel therapeutic target for the treatment of progression and metastasis of HCC with CSC-like signatures and epithelial-mesenchymal transition phenotype.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 80 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 80 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 17 21%
Student > Ph. D. Student 13 16%
Student > Master 10 13%
Researcher 9 11%
Student > Doctoral Student 7 9%
Other 4 5%
Unknown 20 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 29 36%
Agricultural and Biological Sciences 12 15%
Medicine and Dentistry 10 13%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Immunology and Microbiology 2 3%
Other 3 4%
Unknown 22 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 January 2016.
All research outputs
#14,812,046
of 22,805,349 outputs
Outputs from Journal of Hematology & Oncology
#722
of 1,191 outputs
Outputs of similar age
#145,172
of 259,171 outputs
Outputs of similar age from Journal of Hematology & Oncology
#14
of 25 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,191 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.7. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 259,171 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.