↓ Skip to main content

RETRACTED ARTICLE: Protective role of p120-catenin in maintaining the integrity of adherens and tight junctions in ventilator-induced lung injury

Overview of attention for article published in Respiratory Research, May 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users
facebook
1 Facebook page
googleplus
1 Google+ user

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
RETRACTED ARTICLE: Protective role of p120-catenin in maintaining the integrity of adherens and tight junctions in ventilator-induced lung injury
Published in
Respiratory Research, May 2015
DOI 10.1186/s12931-015-0217-3
Pubmed ID
Authors

Changping Gu, Mengjie Liu, Tao Zhao, Dong Wang, Yuelan Wang

Abstract

Ventilator-induced lung injury (VILI) is one of the most common complications for patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Although p120 is an important protein in the regulation of cell junctions, further mechanisms should be explored for prevention and treatment of VILI. Mouse lung epithelial cells (MLE-12), which were transfected with p120 small interfering (si)RNA, p120 cDNA, wild-type E-cadherin juxtamembrane domain or a K83R mutant juxtamembrane domain (K83R-JMD), were subjected to 20 % cyclic stretches for 2 or 4 h. Furthermore, MLE-12 cells and mice, which were pretreated with the c-Src inhibitor PP2 or RhoA inhibitor Y27632, underwent 20 % cyclic stretches or mechanical stretching, respectively. Moreover, wild-type C57BL/6 mice were transfected with p120 siRNA-liposome complexes before mechanical ventilation. Cell lysates and lung tissues were then analyzed to detect lung injury. cyclic stretches of 20 % actived c-Src, which induced degradation of E-cadherin, p120 and occludin. However, loss of p120 increased the degradation and endocytosis of E-cadherin. Immunoprecipitation and Immunofluorescence results showed a decrease in the association between p120 and E-cadherin, while gap formation increased in p120 siRNA and K83R-JMD groups after 20 % cyclic stretches. Loss of p120 also reduced the occludin level and decreased the association of occludin and ZO-1 by enhancing RhoA activity. However, the altered levels of occludin and E-cadherin were reversed by PP2 or Y27632 treatments compared with the cyclic stretch group. Consistently, the expression, redistribution and disassociation of junction proteins were all restored in the p120 overexpression group after 20 % cyclic stretches. Moreover, the role of p120 in VILI was confirmed by increased wet/dry weigh ratio and enhanced production of cytokines (tumor necrosis factor-α and interleukin-six) in p120-depleted mice under mechanical ventilation. p120 protected against VILI by regulating both adherens and tight junctions. p120 inhibited E-cadherin endocytosis by increasing the association between p120 and juxtamembrane domain of E-cadherin. Furthermore, p120 reduced the degradation of occludin by inhibiting RhoA activity. These findings illustrated further mechanisms of p120 in the prevention of VILI, especially for patients with ALI or ARDS.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 4%
Unknown 22 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 35%
Student > Bachelor 2 9%
Student > Master 2 9%
Student > Doctoral Student 1 4%
Other 1 4%
Other 4 17%
Unknown 5 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 22%
Medicine and Dentistry 4 17%
Biochemistry, Genetics and Molecular Biology 4 17%
Engineering 2 9%
Sports and Recreations 1 4%
Other 1 4%
Unknown 6 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 May 2015.
All research outputs
#15,184,741
of 25,394,764 outputs
Outputs from Respiratory Research
#1,603
of 3,064 outputs
Outputs of similar age
#137,662
of 280,371 outputs
Outputs of similar age from Respiratory Research
#26
of 37 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,064 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,371 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one is in the 5th percentile – i.e., 5% of its contemporaries scored the same or lower than it.