↓ Skip to main content

Intrapulmonary administration of bone-marrow derived M1/M2 macrophages to enhance the resolution of LPS-induced lung inflammation: noninvasive monitoring using free-breathing MR and CT imaging…

Overview of attention for article published in BMC Medical Imaging, May 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Intrapulmonary administration of bone-marrow derived M1/M2 macrophages to enhance the resolution of LPS-induced lung inflammation: noninvasive monitoring using free-breathing MR and CT imaging protocols
Published in
BMC Medical Imaging, May 2015
DOI 10.1186/s12880-015-0059-y
Pubmed ID
Authors

Achraf Al Faraj, Asma Sultana Shaik, Mohammed Alnafea

Abstract

Alveolar macrophages, with their high functional plasticity, were reported to orchestrate the induction and resolution of inflammatory processes in chronic pulmonary diseases. Noninvasive imaging modalities that offer simultaneous monitoring of inflammation progression and tracking of macrophages subpopulations involved in the inflammatory cascade, can provide an ideal and specific diagnostic tool to visualize the action mechanism in its initial stages. Therefore, the purpose of the current study was to evaluate the role of M1 and M2 macrophages in the resolution of lipopolysaccharide (LPS)-induced lung inflammation and monitor this process using noninvasive free-breathing MRI and CT protocols. Bone-marrow derived macrophages were first polarized to M1 and M2 macrophages and then labeled with superparamagnetic iron oxide nanoparticles. BALB/c mice with lung inflammation received an intrapulmonary instillation of these ex vivo polarized M1 or M2 macrophages. The biodistribution of macrophages subpopulations and the subsequent resolution of lung inflammation were noninvasively monitored using MRI and micro-CT. Confirmatory immunohistochemistry analyses were performed on lung tissue sections using specific macrophage markers. As expected, large inflammatory areas noninvasively imaged using pulmonary MR and micro-CT were observed within the lungs following LPS challenge. Subsequent intrapulmonary administration of M1 and M2 macrophages resulted in a significant decrease in inflammation starting from 72 h. Confirmatory immunohistochemistry analyses established a progression of lung inflammation with LPS and its subsequent reduction with both macrophages subsets. An enhanced resolution of inflammation was observed with M2 macrophages compared to M1. The current study demonstrated that ex vivo polarized macrophages decreased LPS-induced lung inflammation. Noninvasive free-breathing MR and CT imaging protocols enabled efficient monitoring of progression and resolution of lung inflammation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 17%
Student > Ph. D. Student 5 17%
Researcher 4 13%
Professor 2 7%
Other 2 7%
Other 3 10%
Unknown 9 30%
Readers by discipline Count As %
Medicine and Dentistry 6 20%
Biochemistry, Genetics and Molecular Biology 4 13%
Agricultural and Biological Sciences 3 10%
Pharmacology, Toxicology and Pharmaceutical Science 3 10%
Immunology and Microbiology 2 7%
Other 2 7%
Unknown 10 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 December 2015.
All research outputs
#6,234,665
of 22,805,349 outputs
Outputs from BMC Medical Imaging
#76
of 596 outputs
Outputs of similar age
#73,848
of 266,311 outputs
Outputs of similar age from BMC Medical Imaging
#2
of 10 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 596 research outputs from this source. They receive a mean Attention Score of 2.1. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,311 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 8 of them.