↓ Skip to main content

A field trial of a PCR-based Mansonella ozzardi diagnosis assay detects high-levels of submicroscopic M. ozzardi infections in both venous blood samples and FTA® card dried blood spots

Overview of attention for article published in Parasites & Vectors, May 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
3 X users
googleplus
1 Google+ user

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A field trial of a PCR-based Mansonella ozzardi diagnosis assay detects high-levels of submicroscopic M. ozzardi infections in both venous blood samples and FTA® card dried blood spots
Published in
Parasites & Vectors, May 2015
DOI 10.1186/s13071-015-0889-z
Pubmed ID
Authors

Jansen Fernandes Medeiros, Tatiana Amaral Pires Almeida, Lucyane Bastos Tavares Silva, Jose Miguel Rubio, James Lee Crainey, Felipe Arley Costa Pessoa, Sergio Luiz Bessa Luz

Abstract

Mansonella ozzardi is a poorly understood human filarial parasite with a broad distribution throughout Latin America. Most of what is known about its parasitism has come from epidemiological studies that have estimated parasite incidence using light microscopy. Light microscopy can, however, miss lighter, submicroscopic, infections. In this study we have compared M. ozzardi incidence estimates made using light microscopy, with estimates made using PCR. 214 DNA extracts made from Large Volume Venous Blood Samples (LVVBS) were taken from volunteers from two study sites in the Rio Solimões region: Codajás [n = 109] and Tefé [n = 105] and were subsequently assayed for M. ozzardi parasitism using a diagnostic PCR (Mo-dPCR). Peripheral finger-prick blood samples were taken from the same individuals and used for microscopic examination. Finger-prick blood, taken from individuals from Tefé, was also used for the creation of FTA®card dried blood spots (DBS) that were subsequently subjected to Mo-dPCR. Overall M. ozzardi incidence estimates made with LVVBS PCRs were 1.8 times higher than those made using microscopy (44.9 % [96/214] compared with 24.3 % [52/214]) and 1.5 times higher than the PCR estimates made from FTA®card DBS (48/105 versus 31/105). PCR-based detection of FTA®card DBS proved 1.3 times more sensitive at diagnosing infections from peripheral blood samples than light microscopy did: detecting 24/105 compared with 31/105. PCR of LVVBS reported the fewest number of false negatives, detecting: 44 of 52 (84.6 %) individuals diagnosed by microscopy; 27 of 31 (87.1 %) of those diagnosed positive from DBSs and 17 out of 18 (94.4 %) of those diagnosed as positive by both alternative methodologies. In this study, Mo-dPCR of LVVBS was by far the most sensitive method of detecting M. ozzardi infections and detected submicroscopic infections. Mo-dPCR FTA®card DBS also provided a more sensitive test for M. ozzardi diagnosis than light microscopy based diagnosis did and thus in settings where only finger-prick assays can be carried-out, it may be a more reliable method of detection. Most existing M. ozzardi incidence estimates, which are often based on light microscope diagnosis, are likely to dramatically underestimate true M. ozzardi parasitism incidence levels.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 12 24%
Researcher 10 20%
Student > Bachelor 4 8%
Student > Postgraduate 4 8%
Student > Ph. D. Student 4 8%
Other 6 12%
Unknown 10 20%
Readers by discipline Count As %
Medicine and Dentistry 9 18%
Agricultural and Biological Sciences 7 14%
Biochemistry, Genetics and Molecular Biology 7 14%
Immunology and Microbiology 6 12%
Nursing and Health Professions 2 4%
Other 7 14%
Unknown 12 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 March 2016.
All research outputs
#13,435,801
of 22,805,349 outputs
Outputs from Parasites & Vectors
#2,454
of 5,461 outputs
Outputs of similar age
#126,879
of 266,611 outputs
Outputs of similar age from Parasites & Vectors
#50
of 120 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,461 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,611 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 120 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.