↓ Skip to main content

Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis

Overview of attention for article published in Molecular Brain, May 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
59 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis
Published in
Molecular Brain, May 2015
DOI 10.1186/s13041-015-0118-x
Pubmed ID
Authors

Kangxin Jin, Haisong Jiang, Dongchang Xiao, Min Zou, Jun Zhu, Mengqing Xiang

Abstract

Retinogenesis is a precisely controlled developmental process during which different types of neurons and glial cells are generated under the influence of intrinsic and extrinsic factors. Three transcription factors, Foxn4, RORβ1 and their downstream effector Ptf1a, have been shown to be indispensable intrinsic regulators for the differentiation of amacrine and horizontal cells. At present, however, it is unclear how Ptf1a specifies these two cell fates from competent retinal precursors. Here, through combined bioinformatic, molecular and genetic approaches in mouse retinas, we identify the Tfap2a and Tfap2b transcription factors as two major downstream effectors of Ptf1a. RNA-seq and immunolabeling analyses show that the expression of Tfap2a and 2b transcripts and proteins is dramatically downregulated in the Ptf1a null mutant retina. Their overexpression is capable of promoting the differentiation of glycinergic and GABAergic amacrine cells at the expense of photoreceptors much as misexpressed Ptf1a is, whereas their simultaneous knockdown has the opposite effect. Given the demonstrated requirement for Tfap2a and 2b in horizontal cell differentiation, our study thus defines a Foxn4/RORβ1-Ptf1a-Tfap2a/2b transcriptional regulatory cascade that underlies the competence, specification and differentiation of amacrine and horizontal cells during retinal development.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 25%
Student > Ph. D. Student 9 20%
Student > Bachelor 6 14%
Student > Master 4 9%
Professor > Associate Professor 2 5%
Other 2 5%
Unknown 10 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 25%
Biochemistry, Genetics and Molecular Biology 10 23%
Neuroscience 8 18%
Medicine and Dentistry 3 7%
Psychology 1 2%
Other 0 0%
Unknown 11 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 January 2016.
All research outputs
#17,758,791
of 22,807,037 outputs
Outputs from Molecular Brain
#747
of 1,106 outputs
Outputs of similar age
#179,483
of 264,532 outputs
Outputs of similar age from Molecular Brain
#13
of 17 outputs
Altmetric has tracked 22,807,037 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,106 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,532 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.