↓ Skip to main content

The maize cytochrome P450 CYP79A61 produces phenylacetaldoxime and indole-3-acetaldoxime in heterologous systems and might contribute to plant defense and auxin formation

Overview of attention for article published in BMC Plant Biology, May 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
49 Dimensions

Readers on

mendeley
78 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The maize cytochrome P450 CYP79A61 produces phenylacetaldoxime and indole-3-acetaldoxime in heterologous systems and might contribute to plant defense and auxin formation
Published in
BMC Plant Biology, May 2015
DOI 10.1186/s12870-015-0526-1
Pubmed ID
Authors

Sandra Irmisch, Philipp Zeltner, Vinzenz Handrick, Jonathan Gershenzon, Tobias G. Köllner

Abstract

Plants produce a group of aldoxime metabolites that are well known as volatiles and as intermediates in cyanogenic glycoside and glucosinolate biosynthesis in particular plant families. Recently it has been demonstrated that aldoximes can also accumulate as part of direct plant defense in poplar. Cytochrome P450 enzymes of the CYP79 family were shown to be responsible for the formation of aldoximes from their amino acid precursors. Here we describe the identification and characterization of maize CYP79A61 which was heterologously expressed in yeast and Nicotiana benthamiana and shown to catalyze the formation of (E/Z)-phenylacetaldoxime and (E/Z)-indole-3-acetaldoxime from L-phenylalanine and L-tryptophan, respectively. Simulated herbivory on maize leaves resulted in an increased CYP79A61 transcript accumulation and in elevated levels of L-phenylalanine and (E/Z)-phenylacetaldoxime. Although L-tryptophan levels were also increased after the treatment, (E/Z)-indole-3-acetaldoxime could not be detected in the damaged leaves. However, simulated herbivory caused a significant increase in auxin concentration. Our data suggest that CYP79A61 might contribute to the formation of (E/Z)-phenylacetaldoxime in maize. Since aldoximes have been described as toxic compounds for insect herbivores and pathogens, the increased accumulation of (E/Z)-phenylacetaldoxime after simulated herbivory indicates that this compound plays a role in plant defense. In addition, it is conceivable that (E/Z)-indole-3-acetaldoxime produced by recombinant CYP79A61 could be further converted into the plant hormone indole-3-acetic acid after herbivore feeding in maize.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 78 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 78 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 27%
Researcher 9 12%
Student > Master 8 10%
Student > Doctoral Student 7 9%
Student > Bachelor 6 8%
Other 13 17%
Unknown 14 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 33 42%
Biochemistry, Genetics and Molecular Biology 17 22%
Chemical Engineering 2 3%
Environmental Science 2 3%
Unspecified 2 3%
Other 5 6%
Unknown 17 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 January 2016.
All research outputs
#13,436,543
of 22,807,037 outputs
Outputs from BMC Plant Biology
#983
of 3,244 outputs
Outputs of similar age
#126,387
of 265,918 outputs
Outputs of similar age from BMC Plant Biology
#20
of 65 outputs
Altmetric has tracked 22,807,037 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,244 research outputs from this source. They receive a mean Attention Score of 3.0. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,918 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 65 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.