↓ Skip to main content

Akt-mediated phosphorylation controls the activity of the Y-box protein MSY3 in skeletal muscle

Overview of attention for article published in Skeletal Muscle, May 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)

Mentioned by

twitter
4 X users
facebook
1 Facebook page

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Akt-mediated phosphorylation controls the activity of the Y-box protein MSY3 in skeletal muscle
Published in
Skeletal Muscle, May 2015
DOI 10.1186/s13395-015-0043-9
Pubmed ID
Authors

Luciana De Angelis, Sreeram Balasubramanian, Libera Berghella

Abstract

The Y-box protein MSY3/Csda represses myogenin transcription in skeletal muscle by binding a highly conserved cis-acting DNA element located just upstream of the myogenin minimal promoter (myogHCE). It is not known how this MSY3 activity is controlled in skeletal muscle. In this study, we provide multiple lines of evidence showing that the post-translational phosphorylation of MSY3 by Akt kinase modulates the MSY3 repression of myogenin. Skeletal muscle and myogenic C2C12 cells were used to study the effects of MSY3 phosphorylation in vivo and in vitro on its sub-cellular localization and activity, by blocking the IGF1/PI3K/Akt pathway, by Akt depletion and over-expression, and by mutating potential MSY3 phosphorylation sites. We observed that, as skeletal muscle progressed from perinatal to postnatal and adult developmental stages, MSY3 protein became gradually dephosphorylated and accumulated in the nucleus. This correlated well with the reduction of phosphorylated active Akt. In C2C12 myogenic cells, blocking the IGF1/PI3K/Akt pathway using LY294002 inhibitor reduced MSY3 phosphorylation levels resulting in its accumulation in the nuclei. Knocking down Akt expression increased the amount of dephosphorylated MSY3 and reduced myogenin expression and muscle differentiation. MSY3 phosphorylation by Akt in vitro impaired its binding at the MyogHCE element, while blocking Akt increased MSY3 binding activity. While Akt over-expression rescued myogenin expression in MSY3 overexpressing myogenic cells, ablation of the Akt substrate, (Ser126 located in the MSY3 cold shock domain) promoted MSY3 accumulation in the nucleus and abolished this rescue. Furthermore, forced expression of Akt in adult skeletal muscle induced MSY3 phosphorylation and myogenin derepression. These results support the hypothesis that MSY3 phosphorylation by Akt interferes with MSY3 repression of myogenin circuit activity during muscle development. This study highlights a previously undescribed Akt-mediated signaling pathway involved in the repression of myogenin expression in myogenic cells and in mature muscle. Given the significance of myogenin regulation in adult muscle, the Akt/MSY3/myogenin regulatory circuit is a potential therapeutic target to counteract muscle degenerative disease.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 5%
Unknown 20 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 24%
Student > Bachelor 4 19%
Student > Ph. D. Student 4 19%
Student > Master 3 14%
Student > Doctoral Student 1 5%
Other 1 5%
Unknown 3 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 38%
Agricultural and Biological Sciences 5 24%
Environmental Science 1 5%
Immunology and Microbiology 1 5%
Psychology 1 5%
Other 2 10%
Unknown 3 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 May 2015.
All research outputs
#13,202,980
of 22,807,037 outputs
Outputs from Skeletal Muscle
#272
of 361 outputs
Outputs of similar age
#122,764
of 265,918 outputs
Outputs of similar age from Skeletal Muscle
#8
of 11 outputs
Altmetric has tracked 22,807,037 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 361 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.2. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,918 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.