↓ Skip to main content

A novel termini analysis theory using HTS data alone for the identification of Enterococcus phage EF4-like genome termini

Overview of attention for article published in BMC Genomics, May 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
4 X users

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A novel termini analysis theory using HTS data alone for the identification of Enterococcus phage EF4-like genome termini
Published in
BMC Genomics, May 2015
DOI 10.1186/s12864-015-1612-3
Pubmed ID
Authors

Xianglilan Zhang, Yahui Wang, Shasha Li, Xiaoping An, Guangqian Pei, Yong Huang, Hang Fan, Zhiqiang Mi, Zhiyi Zhang, Wei Wang, Yubao Chen, Yigang Tong

Abstract

Enterococcus faecalis and Enterococcus faecium are typical enterococcal bacterial pathogens. Antibiotic resistance means that the identification of novel E. faecalis and E. faecium phages against antibiotic-resistant Enterococcus have an important impact on public health. In this study, the E. faecalis phage IME-EF4, E. faecium phage IME-EFm1, and both their hosts were antibiotic resistant. To characterize the genome termini of these two phages, a termini analysis theory was developed to provide a wealth of terminal sequence information directly, using only high-throughput sequencing (HTS) read frequency statistics. The complete genome sequences of phages IME-EF4 and IME-EFm1 were determined, and our termini analysis theory was used to determine the genome termini of these two phages. Results showed 9 bp 3' protruding cohesive ends in both IME-EF4 and IME-EFm1 genomes by analyzing frequencies of HTS reads. For the positive strands of their genomes, the 9 nt 3' protruding cohesive ends are 5'-TCATCACCG-3' (IME-EF4) and 5'-GGGTCAGCG-3' (IME-EFm1). Further experiments confirmed these results. These experiments included mega-primer polymerase chain reaction sequencing, terminal run-off sequencing, and adaptor ligation followed by run-off sequencing. Using this termini analysis theory, the termini of two newly isolated antibiotic-resistant Enterococcus phages, IME-EF4 and IME-EFm1, were identified as the byproduct of HTS. Molecular biology experiments confirmed the identification. Because it does not require time-consuming wet lab termini analysis experiments, the termini analysis theory is a fast and easy means of identifying phage DNA genome termini using HTS read frequency statistics alone. It may aid understanding of phage DNA packaging.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 18%
Student > Bachelor 5 15%
Researcher 3 9%
Student > Ph. D. Student 3 9%
Student > Doctoral Student 2 6%
Other 4 12%
Unknown 11 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 26%
Biochemistry, Genetics and Molecular Biology 4 12%
Veterinary Science and Veterinary Medicine 3 9%
Immunology and Microbiology 3 9%
Nursing and Health Professions 1 3%
Other 2 6%
Unknown 12 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 February 2016.
All research outputs
#13,202,980
of 22,807,037 outputs
Outputs from BMC Genomics
#4,764
of 10,650 outputs
Outputs of similar age
#123,076
of 266,679 outputs
Outputs of similar age from BMC Genomics
#110
of 254 outputs
Altmetric has tracked 22,807,037 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,650 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,679 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 254 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.