↓ Skip to main content

Spectrum of low-density lipoprotein receptor (LDLR) mutations in a cohort of Sri Lankan patients with familial hypercholesterolemia – a preliminary report

Overview of attention for article published in Lipids in Health and Disease, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
69 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Spectrum of low-density lipoprotein receptor (LDLR) mutations in a cohort of Sri Lankan patients with familial hypercholesterolemia – a preliminary report
Published in
Lipids in Health and Disease, May 2018
DOI 10.1186/s12944-018-0763-z
Pubmed ID
Authors

C. S. Paththinige, J. R. D. K. Rajapakse, G. R. Constantine, K. P. Sem, R. R. Singaraja, R. W. Jayasekara, V. H. W. Dissanayake

Abstract

Hypercholesterolemia is a major determinant of cardiovascular disease-associated morbidity and mortality. Mutations in the LDL-receptor (LDLR) gene are implicated in the majority of the cases with familial hypercholesterolemia (FH). However, the spectrum of mutations in the LDLR gene in Sri Lankan patients has not been investigated. The objective of this study was to report the frequency and spectrum of variants in LDLR in a cohort of Sri Lankan patients with FH. A series of consecutive patients with FH, diagnosed according to Modified Simon Broome criteria or Dutch Lipid Clinic Network criteria at the University Medical Unit, Colombo, were recruited. Clinical data was recorded. DNA was extracted from peripheral blood samples. The LDLR gene was screened for genetic variants by Sanger sequencing. A total of 27 patients [13 (48%) males, 14 (52%) females; age range 24-73 years] were tested. Clinical features found among these 27 patients were: xanthelasma in 5 (18.5%), corneal arcus in 1 (3.7%), coronary artery disease (CAD) in 10 (37%), and a family history of hypercholesterolemia and/or CAD in 24 (88.9%) patients. In the entire cohort, mean total cholesterol was 356.8 mg/dl (±66.4) and mean LDL-cholesterol was 250.3 mg/dl (±67.7). Sanger sequencing of the 27 patients resulted in the identification of known pathogenic missense mutations in 5 (18.5%) patients. Four were heterozygotes for 1 mutation each. They were c.682G > C in 2 patients, c.1720C > A in 1 patient, and c.1855 T > A in 1 patient. One patient with severe FH phenotypes was a compound heterozygote for one known mutation, c.2289G > T, and another missense variant, c.1670C > G (p.Thr557Ser), with unknown functional impact. This latter variant has not been reported in any other population previously. The frequency of known mutations in the LDLR gene in this cohort of patients was markedly low compared to frequencies reported in other populations. This highlights the likelihood of a complex, polygenic inheritance of FH in Sri Lankan patients, indicating the need for a comprehensive genetic evaluation that includes the screening for mutations in other genes that cause FH, such as APOB, PCSK9, and LDLRAP1.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 69 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 69 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 15 22%
Student > Master 11 16%
Researcher 7 10%
Student > Ph. D. Student 6 9%
Student > Doctoral Student 3 4%
Other 5 7%
Unknown 22 32%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 22 32%
Medicine and Dentistry 10 14%
Agricultural and Biological Sciences 4 6%
Nursing and Health Professions 2 3%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Other 6 9%
Unknown 23 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 May 2018.
All research outputs
#14,390,935
of 23,047,237 outputs
Outputs from Lipids in Health and Disease
#685
of 1,460 outputs
Outputs of similar age
#185,301
of 326,328 outputs
Outputs of similar age from Lipids in Health and Disease
#23
of 44 outputs
Altmetric has tracked 23,047,237 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,460 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.1. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,328 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 44 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.