↓ Skip to main content

The effects of H3N2 swine influenza virus infection on TLRs and RLRs signaling pathways in porcine alveolar macrophages

Overview of attention for article published in Virology Journal, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The effects of H3N2 swine influenza virus infection on TLRs and RLRs signaling pathways in porcine alveolar macrophages
Published in
Virology Journal, April 2015
DOI 10.1186/s12985-015-0284-6
Pubmed ID
Authors

Jinqiu Zhang, Jinfeng Miao, Jibo Hou, Chengping Lu

Abstract

Swine influenza is an economically important respiratory disease of swine resulting from infection with influenza A virus. Swine influenza virus (SIV) becomes the focus as pigs have been hypothesized to serve as an intermediate host for the adaptation of avian influenza viruses to humans or as mixing vessels for the generation of genetically reassortant viruses. The ability of the innate immune system to detect and respond to pathogens is important for survival. Therefore, there is a critical need to evaluate the immediate response to viral infection, especially the role of the toll-like receptors (TLRs) and RNA helicase RIG-I-like receptors (RLRs) innate immunity signaling pathways in H3N2 swine influenza virus infection. In this study, porcine alveolar macrophages (PAMs) were obtained from porcine lungs and were infected with SIV at a multiplicity of infection (MOI) of 5 in vitro. The changes of the related receptors, signaling proteins and effector molecules of TLRs and RLRs signaling pathways post H3N2 virus infection of PAMs were quantified by Real-time quantitative RT-PCR and western blotting. The results showed that H3N2 SIV infection significantly increased mRNA expression of TLR-3, TLR-7, RIG- I and MDA5 after 4 hpi (P < 0.05). Western blotting showed that the protein levels of TLR-3, TLR-7 and RIG-I also had a significantly increase after PAM exposed to virus. A significant change of MyD88, MAVS, IRF-3 and IRF-7 mRNA expression were present at 8 hpi. More than a 4-fold increase was induced for TNF-α and IL-1β mRNA expression. And the concentration of TNF-α and IL-1β peaked at 12 and 24 hpi, respectively. IFN-α, IFN-β mRNA and protein levels increased after SIV infection and significant differences was observed at 8, 12 and 24 hpi. These results indicate that H3N2 swine influenza virus infection significantly influences the expression of the receptors, adapter proteins and downstream effector molecules of RLRs and TLRs signaling pathways. This study enhances our understanding of innate immunity signaling pathways in PAM anti-infection of H3N2 SIV.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 29%
Student > Ph. D. Student 6 17%
Researcher 5 14%
Other 2 6%
Student > Doctoral Student 2 6%
Other 3 9%
Unknown 7 20%
Readers by discipline Count As %
Immunology and Microbiology 9 26%
Agricultural and Biological Sciences 6 17%
Medicine and Dentistry 5 14%
Veterinary Science and Veterinary Medicine 4 11%
Biochemistry, Genetics and Molecular Biology 3 9%
Other 1 3%
Unknown 7 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 May 2019.
All research outputs
#14,685,107
of 22,807,037 outputs
Outputs from Virology Journal
#1,780
of 3,043 outputs
Outputs of similar age
#146,468
of 264,269 outputs
Outputs of similar age from Virology Journal
#41
of 49 outputs
Altmetric has tracked 22,807,037 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,043 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.8. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,269 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 49 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.