↓ Skip to main content

Development and validation of a pre-hospital “Red Flag” alert for activation of intra-hospital haemorrhage control response in blunt trauma

Overview of attention for article published in Critical Care, May 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
47 X users

Citations

dimensions_citation
55 Dimensions

Readers on

mendeley
102 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Development and validation of a pre-hospital “Red Flag” alert for activation of intra-hospital haemorrhage control response in blunt trauma
Published in
Critical Care, May 2018
DOI 10.1186/s13054-018-2026-9
Pubmed ID
Authors

Sophie Rym Hamada, Anne Rosa, Tobias Gauss, Jean-Philippe Desclefs, Mathieu Raux, Anatole Harrois, Arnaud Follin, Fabrice Cook, Mathieu Boutonnet, the Traumabase® Group, Arie Attias, Sylvain Ausset, Gilles Dhonneur, Olivier Langeron, Catherine Paugam-Burtz, Romain Pirracchio, Bruno Riou, Guillaume de St Maurice, Bernard Vigué, Alexandra Rouquette, Jacques Duranteau

Abstract

Haemorrhagic shock is the leading cause of early preventable death in severe trauma. Delayed treatment is a recognized prognostic factor that can be prevented by efficient organization of care. This study aimed to develop and validate Red Flag, a binary alert identifying blunt trauma patients with high risk of severe haemorrhage (SH), to be used by the pre-hospital trauma team in order to trigger an adequate intra-hospital standardized haemorrhage control response: massive transfusion protocol and/or immediate haemostatic procedures. A multicentre retrospective study of prospectively collected data from a trauma registry (Traumabase®) was performed. SH was defined as: packed red blood cell (RBC) transfusion in the trauma room, or transfusion ≥ 4 RBC in the first 6 h, or lactate ≥ 5 mmol/L, or immediate haemostatic surgery, or interventional radiology and/or death of haemorrhagic shock. Pre-hospital characteristics were selected using a multiple logistic regression model in a derivation cohort to develop a Red Flag binary alert whose performances were confirmed in a validation cohort. Among the 3675 patients of the derivation cohort, 672 (18%) had SH. The final prediction model included five pre-hospital variables: Shock Index ≥ 1, mean arterial blood pressure ≤ 70 mmHg, point of care haemoglobin ≤ 13 g/dl, unstable pelvis and pre-hospital intubation. The Red Flag alert was triggered by the presence of any combination of at least two criteria. Its predictive performances were sensitivity 75% (72-79%), specificity 79% (77-80%) and area under the receiver operating characteristic curve 0.83 (0.81-0.84) in the derivation cohort, and were not significantly different in the independent validation cohort of 2999 patients. The Red Flag alert developed and validated in this study has high performance to accurately predict or exclude SH.

X Demographics

X Demographics

The data shown below were collected from the profiles of 47 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 102 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 102 100%

Demographic breakdown

Readers by professional status Count As %
Other 17 17%
Researcher 13 13%
Student > Doctoral Student 11 11%
Student > Master 8 8%
Student > Ph. D. Student 6 6%
Other 17 17%
Unknown 30 29%
Readers by discipline Count As %
Medicine and Dentistry 57 56%
Nursing and Health Professions 7 7%
Agricultural and Biological Sciences 1 <1%
Biochemistry, Genetics and Molecular Biology 1 <1%
Earth and Planetary Sciences 1 <1%
Other 1 <1%
Unknown 34 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 27. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 June 2019.
All research outputs
#1,445,346
of 25,382,440 outputs
Outputs from Critical Care
#1,272
of 6,555 outputs
Outputs of similar age
#30,930
of 340,493 outputs
Outputs of similar age from Critical Care
#41
of 87 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,555 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.8. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,493 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 87 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.