↓ Skip to main content

Transcriptional profiling of swine mammary gland during the transition from colostrogenesis to lactogenesis using RNA sequencing

Overview of attention for article published in BMC Genomics, May 2018
Altmetric Badge

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptional profiling of swine mammary gland during the transition from colostrogenesis to lactogenesis using RNA sequencing
Published in
BMC Genomics, May 2018
DOI 10.1186/s12864-018-4719-5
Pubmed ID
Authors

V. Palombo, J. J. Loor, M. D’Andrea, M. Vailati-Riboni, K. Shahzad, U. Krogh, P. K. Theil

Abstract

Colostrum and milk are essential sources of antibodies and nutrients for the neonate, playing a key role in their survival and growth. Slight abnormalities in the timing of colostrogenesis/lactogenesis potentially threaten piglet survival. To further delineate the genes and transcription regulators implicated in the control of the transition from colostrogenesis to lactogenesis, we applied RNA-seq analysis of swine mammary gland tissue from late-gestation to farrowing. Three 2nd parity sows were used for mammary tissue biopsies on days 14, 10, 6 and 2 before (-) parturition and on day 1 after (+) parturition. A total of 15 mRNA libraries were sequenced on a HiSeq2500 (Illumina Inc.). The Dynamic Impact Approach and the Ingenuity Pathway Analysis were used for pathway analysis and gene network analysis, respectively. A large number of differentially expressed genes were detected very close to parturition (-2d) and at farrowing (+ 1d). The results reflect the extraordinary metabolic changes in the swine mammary gland once it enters into the crucial phases of lactogenesis and underscore a strong transcriptional component in the control of colostrogenesis. There was marked upregulation of genes involved in synthesis of colostrum and main milk components (i.e. proteins, fat, lactose and antimicrobial factors) with a pivotal role of CSN1S2, LALBA, WAP, SAA2, and BTN1A1. The sustained activation of transcription regulators such as SREBP1 and XBP1 suggested they help coordinate these adaptations. Overall, the precise timing for the transition from colostrogenesis to lactogenesis in swine mammary gland remains uncharacterized. However, our transcriptomic data support the hypothesis that the transition occurs before parturition. This is likely attributable to upregulation of a wide array of genes including those involved in 'Protein and Carbohydrate Metabolism', 'Immune System', 'Lipid Metabolism', 'PPAR signaling pathway' and 'Prolactin signaling pathway' along with the activation of transcription regulators controlling lipid synthesis and endoplasmic reticulum biogenesis and stress response.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 15%
Researcher 6 13%
Student > Ph. D. Student 6 13%
Professor 4 9%
Student > Doctoral Student 3 6%
Other 8 17%
Unknown 13 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 23 49%
Biochemistry, Genetics and Molecular Biology 3 6%
Veterinary Science and Veterinary Medicine 2 4%
Business, Management and Accounting 1 2%
Unspecified 1 2%
Other 2 4%
Unknown 15 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 May 2018.
All research outputs
#18,606,163
of 23,047,237 outputs
Outputs from BMC Genomics
#8,228
of 10,697 outputs
Outputs of similar age
#253,173
of 326,458 outputs
Outputs of similar age from BMC Genomics
#181
of 243 outputs
Altmetric has tracked 23,047,237 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,697 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,458 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 243 others from the same source and published within six weeks on either side of this one. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.