↓ Skip to main content

Differential plasma microvesicle and brain profiles of microRNA in experimental cerebral malaria

Overview of attention for article published in Malaria Journal, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
68 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differential plasma microvesicle and brain profiles of microRNA in experimental cerebral malaria
Published in
Malaria Journal, May 2018
DOI 10.1186/s12936-018-2330-5
Pubmed ID
Authors

Amy Cohen, Anna Zinger, Natalia Tiberti, Georges E. R. Grau, Valery Combes

Abstract

Cerebral malaria (CM) is a fatal complication of Plasmodium infection, mostly affecting children under the age of five in the sub-Saharan African region. CM pathogenesis remains incompletely understood, although sequestered infected red blood cells, inflammatory cells aggregating in the cerebral blood vessels, and the microvesicles (MV) that they release in the circulation, have been implicated. Plasma MV numbers increase in CM patients and in the murine model, where blocking their release, genetically or pharmacologically, protects against brain pathology, suggesting a role of MV in CM neuropathogenesis. In this work, the microRNA (miRNA) cargo of MV is defined for the first time during experimental CM with the overarching hypothesis that this characterization could help understand CM pathogenesis. The change in abundance of miRNA was studied following infection of CBA mice with Plasmodium berghei ANKA strain (causing experimental CM), and Plasmodium yoelii, which causes severe malaria without cerebral complications, termed non-CM (NCM). miRNA expression was analyzed using microarrays to compare MV from healthy (NI) and CM mice, yielding several miRNA of interest. The differential expression profiles of these selected miRNA (miR-146a, miR-150, miR-193b, miR-205, miR-215, miR-467a, and miR-486) were analyzed in mouse MV, MV-free plasma, and brain tissue by quantitative reverse transcription PCR (RT-qPCR). Two miRNA-miR-146a and miR-193b-were confirmed as differentially abundant in MV from CM mice, compared with NCM and NI mice. These miRNA have been shown to play various roles in inflammation, and their dysregulation during CM may be critical for triggering the neurological syndrome via regulation of their potential downstream targets. These data suggest that, in the mouse model at least, miRNA may have a regulatory role in the pathogenesis of severe malaria.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 68 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 68 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 16%
Student > Master 9 13%
Student > Bachelor 9 13%
Researcher 4 6%
Other 3 4%
Other 7 10%
Unknown 25 37%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 19%
Immunology and Microbiology 6 9%
Medicine and Dentistry 5 7%
Pharmacology, Toxicology and Pharmaceutical Science 3 4%
Neuroscience 3 4%
Other 10 15%
Unknown 28 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 May 2018.
All research outputs
#14,876,875
of 24,400,706 outputs
Outputs from Malaria Journal
#3,892
of 5,827 outputs
Outputs of similar age
#179,185
of 329,808 outputs
Outputs of similar age from Malaria Journal
#79
of 114 outputs
Altmetric has tracked 24,400,706 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,827 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 32nd percentile – i.e., 32% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,808 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 114 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.