↓ Skip to main content

A differential response to newt regeneration extract by C2C12 and primary mammalian muscle cells

Overview of attention for article published in Skeletal Muscle, June 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Readers on

mendeley
38 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A differential response to newt regeneration extract by C2C12 and primary mammalian muscle cells
Published in
Skeletal Muscle, June 2015
DOI 10.1186/s13395-015-0044-8
Pubmed ID
Authors

Sarah Kawesa, Jason Vanstone, Catherine Tsilfidis

Abstract

Dedifferentiation, a process whereby differentiated cells lose their specialized characteristics and revert to a less differentiated state, plays a key role in the regeneration process in urodele amphibians such as the red spotted newt, Notophthalmus viridescens. Dedifferentiation of fully mature tissues is generally absent in mammalian cells. Previous studies have shown that mouse C2C12 multinucleated myotubes treated with extract derived from regenerating newt forelimbs can re-enter the cell cycle, fragment into mononucleated cells, and proliferate. However, this response has been difficult to replicate. We isolated extract from early newt forelimb regenerates and assessed its effects on differentiation of proliferating primary and C2C12 myoblasts. We also treated fully differentiated primary and C2C12 myotube cultures with extract and assessed cell cycle re-entry and myotube fragmentation. We have confirmed the results obtained in C2C12 cells and expanded these studies to also examine the effects of newt regeneration extracts on primary muscle cells. Newt extract can block differentiation of both C2C12 and primary myoblasts. Once differentiation is induced, treatment with newt extract causes cell cycle re-entry and fragmentation of C2C12 myotubes. Downregulation of p21 and muscle-specific markers is also induced. Primary myotubes also fragment in response to extract treatment, and the fragmented cells remain viable for long periods of time in culture. However, unlike C2C12 cells, primary muscle cells do not re-enter the cell cycle in response to treatment with newt extracts. Dedifferentiation of fully mature muscle occurs during regeneration in the newt forelimb to contribute cells to the regeneration process. Our study shows that extracts derived from regenerating newt forelimbs can induce dedifferentiation, cell cycle re-entry, and fragmentation of mouse C2C12 cells but can only induce fragmentation in primary muscle cells.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 24%
Student > Master 8 21%
Researcher 5 13%
Student > Bachelor 4 11%
Professor > Associate Professor 2 5%
Other 3 8%
Unknown 7 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 32%
Agricultural and Biological Sciences 11 29%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Immunology and Microbiology 1 3%
Psychology 1 3%
Other 4 11%
Unknown 8 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 June 2015.
All research outputs
#14,228,602
of 22,811,321 outputs
Outputs from Skeletal Muscle
#299
of 361 outputs
Outputs of similar age
#138,243
of 266,811 outputs
Outputs of similar age from Skeletal Muscle
#13
of 13 outputs
Altmetric has tracked 22,811,321 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 361 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.2. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,811 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.