↓ Skip to main content

Integrative epigenomic and genomic filtering for methylation markers in hepatocellular carcinomas

Overview of attention for article published in BMC Medical Genomics, June 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
1 X user
patent
2 patents

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Integrative epigenomic and genomic filtering for methylation markers in hepatocellular carcinomas
Published in
BMC Medical Genomics, June 2015
DOI 10.1186/s12920-015-0105-1
Pubmed ID
Authors

Jing Shen, Clare LeFave, Iryna Sirosh, Abby B. Siegel, Benjamin Tycko, Regina M. Santella

Abstract

Epigenome-wide studies in hepatocellular carcinoma (HCC) have identified numerous genes with aberrant DNA methylation. However, methods for triaging functional candidate genes as useful biomarkers for epidemiological study have not yet been developed. We conducted targeted next-generation bisulfite sequencing (bis-seq) to investigate associations of DNA methylation and mRNA expression in HCC. Integrative analyses of epigenetic profiles with DNA copy number analysis were used to pinpoint functional genes regulated mainly by altered DNA methylation. Significant differences between HCC tumor and adjacent non-tumor tissue were observed for 28 bis-seq amplicons, with methylation differences varying from 12% to 43%. Available mRNA expression data in Oncomine were evaluated. Two candidate genes (GRASP and TSPYL5) were significantly under-expressed in HCC tumors in comparison with precursor and normal liver tissues. The expression levels in tumor tissues were, respectively, 1.828 and - 0.148, significantly lower than those in both precursor and normal liver tissue. Validations in an additional 42 paired tissues showed consistent under-expression in tumor tissue for GRASP (-7.49) and TSPYL5 (-9.71). A highly consistent DNA hypermethylation and mRNA repression pattern was obtained for both GRASP (69%) and TSPYL5 (73%), suggesting that their biological function is regulated by DNA methylation. Another two genes (RGS17 and NR2E1) at Chr6q showed significantly decreased DNA methylation in tumors with loss of DNA copy number compared to those without, suggesting alternative roles of DNA copy number losses and hypermethylation in the regulation of RGS17 and NR2E1. These results suggest that integrative analyses of epigenomic and genomic data provide an efficient way to filter functional biomarkers for future epidemiological studies in human cancers.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 21%
Other 3 16%
Student > Bachelor 2 11%
Researcher 2 11%
Student > Ph. D. Student 1 5%
Other 0 0%
Unknown 7 37%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 32%
Agricultural and Biological Sciences 5 26%
Environmental Science 1 5%
Unknown 7 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 June 2023.
All research outputs
#4,939,383
of 23,943,619 outputs
Outputs from BMC Medical Genomics
#224
of 1,285 outputs
Outputs of similar age
#60,039
of 269,773 outputs
Outputs of similar age from BMC Medical Genomics
#12
of 33 outputs
Altmetric has tracked 23,943,619 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,285 research outputs from this source. They receive a mean Attention Score of 4.7. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 269,773 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.