↓ Skip to main content

A new method to measure the semantic similarity from query phenotypic abnormalities to diseases based on the human phenotype ontology

Overview of attention for article published in BMC Bioinformatics, May 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
36 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A new method to measure the semantic similarity from query phenotypic abnormalities to diseases based on the human phenotype ontology
Published in
BMC Bioinformatics, May 2018
DOI 10.1186/s12859-018-2064-y
Pubmed ID
Authors

Xiaofeng Gong, Jianping Jiang, Zhongqu Duan, Hui Lu

Abstract

Although rapid developed sequencing technologies make it possible for genotype data to be used in clinical diagnosis, it is still challenging for clinicians to understand the results of sequencing and make correct judgement based on them. Before this, diagnosis based on clinical features held a leading position. With the establishment of the Human Phenotype Ontology (HPO) and the enrichment of phenotype-disease annotations, there throws much more attention to the improvement of phenotype-based diagnosis. In this study, we presented a novel method called RelativeBestPair to measure similarity from the query terms to hereditary diseases based on HPO and then rank the candidate diseases. To evaluate the performance, we simulated a set of patients based on 44 complex diseases. Besides, by adding noise or imprecision or both, cases closer to real clinical conditions were generated. Thus, four simulated datasets were used to make comparison among RelativeBestPair and seven existing semantic similarity measures. RelativeBestPair ranked the underlying disease as top 1 on 93.73% of the simulated dataset without noise and imprecision, 93.64% of the simulated dataset with noise and without imprecision, 39.82% of the simulated dataset without noise and with imprecision, and 33.64% of the simulated dataset with both noise and imprecision. Compared with the seven existing semantic similarity measures, RelativeBestPair showed similar performance in two datasets without imprecision. While RelativeBestPair appeared to be equal to Resnik and better than other six methods in the simulated dataset without noise and with imprecision, it significantly outperformed all other seven methods in the simulated dataset with both noise and imprecision. It can be indicated that RelativeBestPair might be of great help in clinical setting.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 22%
Student > Master 5 14%
Student > Ph. D. Student 5 14%
Other 3 8%
Student > Bachelor 3 8%
Other 5 14%
Unknown 7 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 31%
Computer Science 6 17%
Medicine and Dentistry 4 11%
Agricultural and Biological Sciences 3 8%
Mathematics 1 3%
Other 2 6%
Unknown 9 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 May 2018.
All research outputs
#20,489,895
of 23,052,509 outputs
Outputs from BMC Bioinformatics
#6,895
of 7,321 outputs
Outputs of similar age
#288,388
of 327,695 outputs
Outputs of similar age from BMC Bioinformatics
#92
of 109 outputs
Altmetric has tracked 23,052,509 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,321 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,695 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 109 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.