↓ Skip to main content

Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in biofilms by pulsed ultraviolet light

Overview of attention for article published in BMC Research Notes, June 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
93 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in biofilms by pulsed ultraviolet light
Published in
BMC Research Notes, June 2015
DOI 10.1186/s13104-015-1206-9
Pubmed ID
Authors

Nedra L. Montgomery, Pratik Banerjee

Abstract

The inactivation of biofilms formed by pathogenic bacteria on ready-to-eat and minimally processed fruits and vegetables by nonthermal processing methods is critical to ensure food safety. Pulsed ultraviolet (PUV) light has shown promise in the surface decontamination of liquid, powdered, and solid foods. In this study, the antimicrobial efficacy of PUV light treatment on nascent biofilms formed by Escherichia coli O157:H7 and Listeria monocytogenes on the surfaces of food packaging materials, such as low-density polyethylene (LDPE), and fresh produce, such as lettuce (Lactuca sativa) leaves, was investigated. The formation of biofilms on Romaine lettuce leaves and LDPE films was confirmed by crystal violet and Alcian blue staining methods. Inactivation of cells in the biofilm was determined by standard plating procedures, and by a luminescence-based bacterial cell viability assay. Upon PUV treatment of 10 s at two different light source to sample distances (4.5 and 8.8 cm), viable cell counts of L. monocytogenes and E. coli O157:H7 in biofilms on the lettuce surface were reduced by 0.6-2.2 log CFU mL(-1) and 1.1-3.8 log CFU mL(-1), respectively. On the LDPE surface, the efficiency of inactivation of biofilm-encased cells was slightly higher. The maximum values for microbial reduction on LDPE were 2.7 log CFU mL(-1) and 3.9 log CFU mL(-1) for L. monocytogenes and E. coli O157:H7, respectively. Increasing the duration of PUV light exposure resulted in a significant (P < 0.05) reduction in biofilm formation by both organisms. The results also revealed that PUV treatment was more effective at reducing E. coli biofilms compared with Listeria biofilms. A moderate increase in temperature (~7-15°C) was observed for both test materials. PUV is an effective nonthermal intervention method for surface decontamination of E. coli O157:H7 and L. monocytogenes on fresh produce and packaging materials.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 93 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 92 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 23 25%
Researcher 11 12%
Student > Ph. D. Student 9 10%
Other 6 6%
Student > Postgraduate 5 5%
Other 15 16%
Unknown 24 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 29 31%
Engineering 7 8%
Immunology and Microbiology 6 6%
Medicine and Dentistry 5 5%
Biochemistry, Genetics and Molecular Biology 4 4%
Other 15 16%
Unknown 27 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 December 2015.
All research outputs
#14,228,602
of 22,811,321 outputs
Outputs from BMC Research Notes
#1,952
of 4,262 outputs
Outputs of similar age
#138,177
of 266,634 outputs
Outputs of similar age from BMC Research Notes
#31
of 77 outputs
Altmetric has tracked 22,811,321 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,262 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,634 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 77 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.