↓ Skip to main content

Unravelling personalized dysfunctional gene network of complex diseases based on differential network model

Overview of attention for article published in Journal of Translational Medicine, June 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (75th percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

twitter
7 X users
googleplus
1 Google+ user

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Unravelling personalized dysfunctional gene network of complex diseases based on differential network model
Published in
Journal of Translational Medicine, June 2015
DOI 10.1186/s12967-015-0546-5
Pubmed ID
Authors

Xiangtian Yu, Tao Zeng, Xiangdong Wang, Guojun Li, Luonan Chen

Abstract

In the conventional analysis of complex diseases, the control and case samples are assumed to be of great purity. However, due to the heterogeneity of disease samples, many disease genes are even not always consistently up-/down-regulated, leading to be under-estimated. This problem will seriously influence effective personalized diagnosis or treatment. The expression variance and expression covariance can address such a problem in a network manner. But, these analyses always require multiple samples rather than one sample, which is generally not available in clinical practice for each individual. To extract the common and specific network characteristics for individual patients in this paper, a novel differential network model, e.g. personalized dysfunctional gene network, is proposed to integrate those genes with different features, such as genes with the differential gene expression (DEG), genes with the differential expression variance (DEVG) and gene-pairs with the differential expression covariance (DECG) simultaneously, to construct personalized dysfunctional networks. This model uses a new statistic-like measurement on differential information, i.e., a differential score (DEVC), to reconstruct the differential expression network between groups of normal and diseased samples; and further quantitatively evaluate different feature genes in the patient-specific network for each individual. This DEVC-based differential expression network (DEVC-net) has been applied to the study of complex diseases for prostate cancer and diabetes. (1) Characterizing the global expression change between normal and diseased samples, the differential gene networks of those diseases were found to have a new bi-coloured topological structure, where their non hub-centred sub-networks are mainly composed of genes/proteins controlling various biological processes. (2) The differential expression variance/covariance rather than differential expression is new informative sources, and can be used to identify genes or gene-pairs with discriminative power, which are ignored by traditional methods. (3) More importantly, DEVC-net is effective to measure the expression state or activity of different feature genes and their network or modules in one sample for an individual. All of these results support that DEVC-net indeed has a clear advantage to effectively extract discriminatively interpretable features of gene/protein network of one sample (i.e. personalized dysfunctional network) even when disease samples are heterogeneous, and thus can provide new features like gene-pairs, in addition to the conventional individual genes, to the analysis of the personalized diagnosis and prognosis, and a better understanding on the underlying biological mechanisms.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 23%
Researcher 8 18%
Student > Master 7 16%
Student > Bachelor 5 11%
Student > Doctoral Student 2 5%
Other 7 16%
Unknown 5 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 20%
Agricultural and Biological Sciences 8 18%
Computer Science 7 16%
Medicine and Dentistry 6 14%
Mathematics 2 5%
Other 6 14%
Unknown 6 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 March 2016.
All research outputs
#5,650,360
of 22,811,321 outputs
Outputs from Journal of Translational Medicine
#869
of 3,991 outputs
Outputs of similar age
#65,288
of 264,753 outputs
Outputs of similar age from Journal of Translational Medicine
#22
of 107 outputs
Altmetric has tracked 22,811,321 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,991 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.5. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,753 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 75% of its contemporaries.
We're also able to compare this research output to 107 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.