↓ Skip to main content

Increased task-uncorrelated muscle activity in childhood dystonia

Overview of attention for article published in Journal of NeuroEngineering and Rehabilitation, June 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Increased task-uncorrelated muscle activity in childhood dystonia
Published in
Journal of NeuroEngineering and Rehabilitation, June 2015
DOI 10.1186/s12984-015-0045-1
Pubmed ID
Authors

Francesca Lunardini, Serena Maggioni, Claudia Casellato, Matteo Bertucco, Alessandra L. G. Pedrocchi, Terence D. Sanger

Abstract

Even if movement abnormalities in dystonia are obvious on observation-based examinations, objective measures to characterize dystonia and to gain insights into its pathophysiology are still strongly needed. We hypothesize that motor abnormalities in childhood dystonia are partially due to the inability to suppress involuntary variable muscle activity irrelevant to the achievement of the desired motor task, resulting in the superposition of unwanted motion components on the desired movement. However, it is difficult to separate and quantify appropriate and inappropriate motor signals combined in the same muscle, especially during movement. We devise an innovative and practical method to objectively measure movement abnormalities during the performance of a continuous figure-eight writing task in 7 children with dystonia and 9 age-matched healthy controls. During the execution of a continuous writing task, muscle contractions should occur at frequencies that match the frequencies of the writing outcome. We compare the power spectra of kinematic trajectories and electromyographic signals of 8 upper limb muscles to separate muscle activity with the same frequency content of the figure-eight movement (task-correlated) from activity occurring at frequencies extraneous to the task (task-uncorrelated). Children with dystonia present a greater magnitude of task-uncorrelated muscle components. The motor performance achieved by children with dystonia is characterized by an overall lower quality, with high spatial and temporal variability and an altered trade-off between speed and accuracy. Findings are consistent with the hypothesis that, in childhood dystonia, the ability to appropriately suppress variable and uncorrelated elements of movement is impaired. Here we present a proof-of-concept of a promising tool to characterize the phenomenology of movement disorders and to inform the design of neurorehabilitation therapies.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Switzerland 1 2%
Unknown 50 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 16%
Researcher 8 16%
Student > Ph. D. Student 5 10%
Student > Bachelor 5 10%
Other 2 4%
Other 7 14%
Unknown 16 31%
Readers by discipline Count As %
Engineering 11 22%
Medicine and Dentistry 4 8%
Nursing and Health Professions 4 8%
Sports and Recreations 3 6%
Neuroscience 3 6%
Other 6 12%
Unknown 20 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 June 2015.
All research outputs
#15,337,950
of 22,813,792 outputs
Outputs from Journal of NeuroEngineering and Rehabilitation
#834
of 1,278 outputs
Outputs of similar age
#155,168
of 264,930 outputs
Outputs of similar age from Journal of NeuroEngineering and Rehabilitation
#9
of 17 outputs
Altmetric has tracked 22,813,792 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,278 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,930 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.