↓ Skip to main content

Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important…

Overview of attention for article published in Parasites & Vectors, June 2015
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
57 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens
Published in
Parasites & Vectors, June 2015
DOI 10.1186/s13071-015-0949-4
Pubmed ID
Authors

Jan Brabec, Aneta Kostadinova, Tomáš Scholz, D. Timothy J. Littlewood

Abstract

The genus Diplostomum (Platyhelminthes: Trematoda: Diplostomidae) is a diverse group of freshwater parasites with complex life-cycles and global distribution. The larval stages are important pathogens causing eye fluke disease implicated in substantial impacts on natural fish populations and losses in aquaculture. However, the problematic species delimitation and difficulties in the identification of larval stages hamper the assessment of the distributional and host ranges of Diplostomum spp. and their transmission ecology. Total genomic DNA was isolated from adult worms and shotgun sequenced using Illumina MiSeq technology. Mitochondrial (mt) genomes and nuclear ribosomal RNA (rRNA) operons were assembled using established bioinformatic tools and fully annotated. Mt protein-coding genes and nuclear rRNA genes were subjected to phylogenetic analysis by maximum likelihood and the resulting topologies compared. We characterised novel complete mt genomes and nuclear rRNA operons of two closely related species, Diplostomum spathaceum and D. pseudospathaceum. Comparative mt genome assessment revealed that the cox1 gene and its 'barcode' region used for molecular identification are the most conserved regions; instead, nad4 and nad5 genes were identified as most promising molecular diagnostic markers. Using the novel data, we provide the first genome wide estimation of the phylogenetic relationships of the order Diplostomida, one of the two fundamental lineages of the Digenea. Analyses of the mitogenomic data invariably recovered the Diplostomidae as a sister lineage of the order Plagiorchiida rather than as a basal lineage of the Diplostomida as inferred in rDNA phylogenies; this was concordant with the mt gene order of Diplostomum spp. exhibiting closer match to the conserved gene order of the Plagiorchiida. Complete sequences of the mt genome and rRNA operon of two species of Diplostomum provide a valuable resource for novel genetic markers for species delineation and large-scale molecular epidemiology and disease ecology studies based on the most accessible life-cycle stages of eye flukes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 2%
Germany 1 2%
Brazil 1 2%
Unknown 44 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 26%
Student > Master 9 19%
Student > Ph. D. Student 6 13%
Student > Bachelor 3 6%
Professor 2 4%
Other 4 9%
Unknown 11 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 21 45%
Environmental Science 2 4%
Biochemistry, Genetics and Molecular Biology 2 4%
Unspecified 1 2%
Veterinary Science and Veterinary Medicine 1 2%
Other 7 15%
Unknown 13 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 June 2015.
All research outputs
#17,763,547
of 22,813,792 outputs
Outputs from Parasites & Vectors
#3,813
of 5,461 outputs
Outputs of similar age
#177,648
of 264,785 outputs
Outputs of similar age from Parasites & Vectors
#87
of 120 outputs
Altmetric has tracked 22,813,792 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,461 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,785 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 120 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.