↓ Skip to main content

Widespread and evolutionary analysis of a MITE family Monkey King in Brassicaceae

Overview of attention for article published in BMC Plant Biology, June 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • High Attention Score compared to outputs of the same age and source (82nd percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Widespread and evolutionary analysis of a MITE family Monkey King in Brassicaceae
Published in
BMC Plant Biology, June 2015
DOI 10.1186/s12870-015-0490-9
Pubmed ID
Authors

Shutao Dai, Jinna Hou, Yan Long, Jing Wang, Cong Li, Qinqin Xiao, Xiaoxue Jiang, Xiaoxiao Zou, Jun Zou, Jinling Meng

Abstract

Miniature inverted repeat transposable elements (MITEs) are important components of eukaryotic genomes, with hundreds of families and many copies, which may play important roles in gene regulation and genome evolution. However, few studies have investigated the molecular mechanisms involved. In our previous study, a Tourist-like MITE, Monkey King, was identified from the promoter region of a flowering time gene, BnFLC.A10, in Brassica napus. Based on this MITE, the characteristics and potential roles on gene regulation of the MITE family were analyzed in Brassicaceae. The characteristics of the Tourist-like MITE family Monkey King in Brassicaceae, including its distribution, copies and insertion sites in the genomes of major Brassicaceae species were analyzed in this study. Monkey King was actively amplified in Brassica after divergence from Arabidopsis, which was indicated by the prompt increase in copy number and by phylogenetic analysis. The genomic variations caused by Monkey King insertions, both intra- and inter-species in Brassica, were traced by PCR amplification. Genomic sequence analysis showed that most complete Monkey King elements are located in gene-rich regions, less than 3kb from genes, in both the B. rapa and A. thaliana genomes. Sixty-seven Brassica expressed sequence tags carrying Monkey King fragments were also identified from the NCBI database. Bisulfite sequencing identified specific DNA methylation of cytosine residues in the Monkey King sequence. A fragment containing putative TATA-box motifs in the MITE sequence could bind with nuclear protein(s) extracted from leaves of B. napus plants. A Monkey King-related microRNA, bna-miR6031, was identified in the microRNA database. In transgenic A. thaliana, when the Monkey King element was inserted upstream of 35S promoter, the promoter activity was weakened. Monkey King, a Brassicaceae Tourist-like MITE family, has amplified relatively recently and has induced intra- and inter-species genomic variations in Brassica. Monkey King elements are most abundant in the vicinity of genes and may have a substantial effect on genome-wide gene regulation in Brassicaceae. Monkey King insertions potentially regulate gene expression and genome evolution through epigenetic modification and new regulatory motif production.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 4%
Unknown 23 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 46%
Student > Ph. D. Student 7 29%
Professor 2 8%
Student > Doctoral Student 1 4%
Unknown 3 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 50%
Biochemistry, Genetics and Molecular Biology 6 25%
Medicine and Dentistry 1 4%
Unknown 5 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 January 2016.
All research outputs
#6,956,978
of 22,813,792 outputs
Outputs from BMC Plant Biology
#553
of 3,246 outputs
Outputs of similar age
#81,359
of 264,785 outputs
Outputs of similar age from BMC Plant Biology
#9
of 62 outputs
Altmetric has tracked 22,813,792 research outputs across all sources so far. This one has received more attention than most of these and is in the 68th percentile.
So far Altmetric has tracked 3,246 research outputs from this source. They receive a mean Attention Score of 3.0. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,785 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 62 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 82% of its contemporaries.