↓ Skip to main content

The long subclinical phase of Mycobacterium avium ssp. paratuberculosis infections explained without adaptive immunity

Overview of attention for article published in Veterinary Research, June 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The long subclinical phase of Mycobacterium avium ssp. paratuberculosis infections explained without adaptive immunity
Published in
Veterinary Research, June 2015
DOI 10.1186/s13567-015-0202-3
Pubmed ID
Authors

Don Klinkenberg, Ad Koets

Abstract

Mycobacterium avium ssp. paratuberculosis (MAP) is an infection of the ruminant intestine. In cows, a long subclinical phase with no or low intermittent shedding precedes the clinical phase with high shedding. It is generally considered that an adaptive cell-mediated immune response controls the infection during the subclinical phase, followed by unprotective antibodies later in life. Based on recent observations, we challenge the importance of adaptive immunity and instead suggest a role of the structural organization of infected macrophages in localized granulomatous lesions. We investigated this hypothesis by mathematical modelling. Our first model describes infection in a villus, assuming a constant lesion volume. This model shows the existence of two threshold parameters, the MAP reproduction ratio R MAP determining if a lesion can develop, and the macrophage replacement ratio R MF determining if recruitment of macrophages is sufficient for unlimited growth. We show that changes in R MF during a cow's life - i.e. changes in the innate immune response - can cause intermittent shedding. Our second model describes infection in a granuloma, assuming a growing lesion volume. This model confirms the results of the villus model, and can explain early slow granuloma development: small granulomas grow slower because bacteria leave the granuloma quickly through the relatively large surface area. In conclusion, our models show that the long subclinical period of MAP infection can result from the structural organization of the infection in granulomatous lesions with an important role for innate rather than adaptive immunity. It thus provides a reasonable hypothesis that needs further investigation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 2 18%
Student > Ph. D. Student 2 18%
Researcher 2 18%
Student > Doctoral Student 1 9%
Professor > Associate Professor 1 9%
Other 0 0%
Unknown 3 27%
Readers by discipline Count As %
Veterinary Science and Veterinary Medicine 6 55%
Immunology and Microbiology 1 9%
Unknown 4 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 June 2015.
All research outputs
#17,286,379
of 25,374,647 outputs
Outputs from Veterinary Research
#836
of 1,337 outputs
Outputs of similar age
#166,119
of 278,849 outputs
Outputs of similar age from Veterinary Research
#17
of 33 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,337 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 278,849 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.