↓ Skip to main content

Case report: a novel KERA mutation associated with cornea plana and its predicted effect on protein function

Overview of attention for article published in BMC Medical Genomics, June 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Case report: a novel KERA mutation associated with cornea plana and its predicted effect on protein function
Published in
BMC Medical Genomics, June 2015
DOI 10.1186/s12881-015-0179-9
Pubmed ID
Authors

Laura Roos, Birgitte Bertelsen, Pernille Harris, Anette Bygum, Hanne Jensen, Karen Grønskov, Zeynep Tümer

Abstract

Cornea plana (CNA) is a hereditary congenital abnormality of the cornea characterized by reduced corneal curvature, extreme hypermetropia, corneal clouding and hazy corneal limbus. The recessive form, CNA2, is associated with homozygous or compound heterozygous mutations of the keratocan gene (KERA) on chromosome 12q22. To date, only nine different disease-associated KERA mutations, including four missense mutations, have been described. In this report, we present clinical data from a Turkish family with autosomal recessive cornea plana. In some of the affected individuals, hypotrichosis was found. KERA was screened for mutations using Sanger sequencing. We detected a novel KERA variant, p.(Ile225Thr), that segregates with the disease in the homozygous form. The three-dimensional structure of keratocan protein was modelled, and we showed that this missense variation is predicted to destabilize the structure of keratocan, leading to the classical ocular phenotype in the affected individuals. All the four known missense mutations, including the variation found in this family, affect the conserved residues of the leucine rich repeat domain of keratocan. These mutations are predicted to result in destabilization of the protein. We present the 10th pathogenic KERA mutation identified so far. Protein modelling is a useful tool in predicting the effect of missense mutations. This case underline the importance of the leucin rich repeat domain for the protein function, and this knowledge will ease the interpretation of future findings of mutations in these areas in other families with cornea plana.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 17%
Librarian 1 8%
Student > Doctoral Student 1 8%
Professor 1 8%
Student > Ph. D. Student 1 8%
Other 2 17%
Unknown 4 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 25%
Medicine and Dentistry 2 17%
Veterinary Science and Veterinary Medicine 1 8%
Nursing and Health Professions 1 8%
Engineering 1 8%
Other 0 0%
Unknown 4 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 June 2015.
All research outputs
#16,722,190
of 25,374,917 outputs
Outputs from BMC Medical Genomics
#1,194
of 2,444 outputs
Outputs of similar age
#156,328
of 278,311 outputs
Outputs of similar age from BMC Medical Genomics
#31
of 58 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,444 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 278,311 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 58 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.