↓ Skip to main content

Differential induction of mutant SOD1 misfolding and aggregation by tau and α-synuclein pathology

Overview of attention for article published in Molecular Neurodegeneration, May 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

news
1 news outlet
twitter
4 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differential induction of mutant SOD1 misfolding and aggregation by tau and α-synuclein pathology
Published in
Molecular Neurodegeneration, May 2018
DOI 10.1186/s13024-018-0253-9
Pubmed ID
Authors

Michael C. Pace, Guilian Xu, Susan Fromholt, John Howard, Benoit I. Giasson, Jada Lewis, David R. Borchelt

Abstract

Prior studies in C. elegans demonstrated that the expression of aggregation-prone polyglutamine proteins in muscle wall cells compromised the folding of co-expressed temperature-sensitive proteins, prompting interest in whether the accumulation of a misfolded protein in pathologic features of human neurodegenerative disease burdens cellular proteostatic machinery in a manner that impairs the folding of other cellular proteins. Mice expressing high levels of mutant forms of tau and α-synuclein (αSyn), which develop inclusion pathologies of the mutant protein in brain and spinal cord, were crossed to mice expressing low levels of mutant superoxide dismutase 1 fused to yellow fluorescent protein (G85R-SOD1:YFP) for aging and neuropathological evaluation. Mice expressing low levels of G85R-SOD1:YFP, alone, lived normal lifespans and were free of evidence of inclusion pathology, setting the stage to use this protein as a reporter of proteostatic function. We observed robust induction of G85R-SOD1:YFP inclusion pathology in the neuropil of spinal cord and brainstem of bigenic mice that co-express high levels of mutant tau in the spinal axis and develop robust spinal tau pathology (JNPL3 mice). In contrast, in crosses of the G85R-SOD1:YFP mice with mice that model spinal α-synucleinopathy (the M83 model of αSyn pathology), we observed no G85R-SOD1:YFP inclusion formation. Similarly, in crosses of the G85R-SOD1:YFP mice to mice that model cortical tau pathology (rTg4510 mice), we did not observe induction of G85R-SOD1:YFP inclusions. Despite robust burdens of neurodegenerative pathology in M83 and rTg4510 mice, the introduction of the G85R-SOD1:YFP protein was induced to aggregate only in the context of spinal tau pathology present in the JNPL3 model. These findings suggest unexpected specificity, mediated by both the primary protein pathology and cellular context, in the induced "secondary aggregation" of a mutant form of SOD1 that could be viewed as a reporter of proteostatic function.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 27%
Student > Master 4 15%
Student > Bachelor 2 8%
Other 2 8%
Researcher 2 8%
Other 4 15%
Unknown 5 19%
Readers by discipline Count As %
Neuroscience 7 27%
Biochemistry, Genetics and Molecular Biology 3 12%
Agricultural and Biological Sciences 3 12%
Medicine and Dentistry 2 8%
Arts and Humanities 1 4%
Other 3 12%
Unknown 7 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 November 2018.
All research outputs
#2,838,092
of 23,666,107 outputs
Outputs from Molecular Neurodegeneration
#377
of 876 outputs
Outputs of similar age
#59,064
of 330,247 outputs
Outputs of similar age from Molecular Neurodegeneration
#13
of 19 outputs
Altmetric has tracked 23,666,107 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 876 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.1. This one has gotten more attention than average, scoring higher than 56% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,247 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.