↓ Skip to main content

Association of aberrant DNA methylation in Apcmin/+ mice with the epithelial-mesenchymal transition and Wnt/β-catenin pathways: genome-wide analysis using MeDIP-seq

Overview of attention for article published in Cell & Bioscience, May 2015
Altmetric Badge

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Association of aberrant DNA methylation in Apcmin/+ mice with the epithelial-mesenchymal transition and Wnt/β-catenin pathways: genome-wide analysis using MeDIP-seq
Published in
Cell & Bioscience, May 2015
DOI 10.1186/s13578-015-0013-2
Pubmed ID
Authors

Yue Guo, Jong Hun Lee, Limin Shu, Ying Huang, Wenji Li, Chengyue Zhang, Anne Yuqing Yang, Sarandeep SS Boyanapalli, Ansu Perekatt, Ronald P Hart, Michael Verzi, Ah-Ng Tony Kong

Abstract

Aberrant DNA methylation at the 5-carbon on cytosine residues (5mC) in CpG dinucleotides is probably the most extensively characterized epigenetic modification in colon cancer. It has been suggested that the loss of adenomatous polyposis coli (APC) function initiates tumorigenesis and that additional genetic and epigenetic events are involved in colon cancer progression. We aimed to study the genome-wide DNA methylation profiles of intestinal tumorigenesis in Apc(min/+) mice. Methylated DNA immunoprecipitation (MeDIP) followed by next-generation sequencing was used to determine the global profile of DNA methylation changes in Apc(min/+) mice. DNA was extracted from adenomatous polyps from Apc(min/+) mice and from normal intestinal tissue from age-matched Apc(+/+) littermates, and the MeDIP-seq assay was performed. Ingenuity Pathway Analysis (IPA) software was used to analyze the data for gene interactions. A total of 17,265 differentially methylated regions (DMRs) displayed a ≥ 2-fold change (log2) in methylation in Apc(min/+) mice; among these DMRs, 9,078 (52.6 %) and 8,187 (47.4 %) exhibited increased and decreased methylation, respectively. Genes with altered methylation patterns were mainly mapped to networks and biological functions associated with cancer and gastrointestinal diseases. Among these networks, several canonical pathways, such as the epithelial-mesenchymal transition (EMT) and Wnt/β-catenin pathways, were significantly associated with genome-wide methylation changes in polyps from Apc(min/+) mice. The identification of certain differentially methylated molecules in the EMT and Wnt/β-catenin pathways, such as APC2 (adenomatosis polyposis coli 2), SFRP2 (secreted frizzled-related protein 2), and DKK3 (dickkopf-related protein 3), was consistent with previous publications. Our findings indicated that Apc(min/+) mice exhibited extensive aberrant DNA methylation that affected certain signaling pathways, such as the EMT and Wnt/β-catenin pathways. The genome-wide DNA methylation profile of Apc(min/+) mice is informative for future studies investigating epigenetic gene regulation in colon tumorigenesis and the prevention of colon cancer.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 21%
Other 4 12%
Student > Master 4 12%
Professor 4 12%
Student > Ph. D. Student 3 9%
Other 6 18%
Unknown 5 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 18%
Biochemistry, Genetics and Molecular Biology 6 18%
Medicine and Dentistry 6 18%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Immunology and Microbiology 2 6%
Other 4 12%
Unknown 7 21%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 June 2015.
All research outputs
#4,390,412
of 5,273,580 outputs
Outputs from Cell & Bioscience
#134
of 154 outputs
Outputs of similar age
#150,538
of 186,183 outputs
Outputs of similar age from Cell & Bioscience
#9
of 9 outputs
Altmetric has tracked 5,273,580 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 154 research outputs from this source. They receive a mean Attention Score of 2.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 186,183 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one.