↓ Skip to main content

Improving stability of elastic stable intramedullary nailing in a transverse midshaft femur fracture model: biomechanical analysis of using end caps or a third nail

Overview of attention for article published in Journal of Orthopaedic Surgery and Research, June 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
1 X user
googleplus
1 Google+ user

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Improving stability of elastic stable intramedullary nailing in a transverse midshaft femur fracture model: biomechanical analysis of using end caps or a third nail
Published in
Journal of Orthopaedic Surgery and Research, June 2015
DOI 10.1186/s13018-015-0239-z
Pubmed ID
Authors

Marion Rapp, Nina Gros, Gregor Zachert, Maaike Schulze-Hessing, Christina Stratmann, Robert Wendlandt, Martin Michael Kaiser

Abstract

Elastic stable intramedullary nailing (ESIN) is accepted widely for treatment of diaphyseal femur fractures in children. However, complication rates of 10 to 50 % are described due to shortening or axial deviation, especially in older or heavier children. Biomechanical in vitro testing was performed to determine whether two modified osteosyntheses with end caps or a third nail could significantly improve the stability in comparison to classical elastic stable intramedullary nailing in a transverse femur fracture model. We performed biomechanical testing in 24 synthetic adolescent femoral bone models (Sawbones®) with a transverse midshaft (diaphyseal) fracture. First, in all models, two nails were inserted in a C-shaped manner (2 × 3.5 mm steel nails, prebent), then eight osteosyntheses were modified by using end caps and another eight by adding a third nail from the antero-lateral (2.5-mm steel, not prebent). Testing was performed in four-point bending, torsion, and shifting under physiological 9° compression. The third nail from the lateral showed a significant positive influence on the stiffness in all four-point bendings as well as in internal rotation comparing to the classical 2C configuration: mean values were significantly higher anterior-posterior (1.04 vs. 0.52 Nm/mm, p < 0.001), posterior-anterior (0.85 vs. 0.43 Nm/mm, p < 0.001), lateral-medial (1.26 vs. 0.70 Nm/mm, p < 0.001), and medial-lateral (1.16 vs. 0.76 Nm/mm, p < 0.001) and during internal rotation (0.16 vs. 0.11 Nm/°, p < 0.001). The modification with end caps did not improve the stiffness in any direction. The configuration with a third nail provided a significantly higher stiffness than the classical 2C configuration as well as the modification with end caps in this biomechanical model. This supports the ongoing transfer of the additional third nail into clinical practice to reduce the axial deviation occurring in clinical practice.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 21%
Researcher 4 14%
Student > Bachelor 3 11%
Student > Postgraduate 2 7%
Student > Ph. D. Student 1 4%
Other 3 11%
Unknown 9 32%
Readers by discipline Count As %
Medicine and Dentistry 12 43%
Nursing and Health Professions 1 4%
Unspecified 1 4%
Materials Science 1 4%
Engineering 1 4%
Other 0 0%
Unknown 12 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 July 2015.
All research outputs
#13,440,839
of 22,815,414 outputs
Outputs from Journal of Orthopaedic Surgery and Research
#417
of 1,368 outputs
Outputs of similar age
#124,102
of 263,898 outputs
Outputs of similar age from Journal of Orthopaedic Surgery and Research
#13
of 48 outputs
Altmetric has tracked 22,815,414 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,368 research outputs from this source. They receive a mean Attention Score of 3.6. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,898 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.