↓ Skip to main content

Simulation-based power calculations for planning a two-stage individual participant data meta-analysis

Overview of attention for article published in BMC Medical Research Methodology, May 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

blogs
1 blog
twitter
2 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Simulation-based power calculations for planning a two-stage individual participant data meta-analysis
Published in
BMC Medical Research Methodology, May 2018
DOI 10.1186/s12874-018-0492-z
Pubmed ID
Authors

Joie Ensor, Danielle L. Burke, Kym I. E. Snell, Karla Hemming, Richard D. Riley

Abstract

Researchers and funders should consider the statistical power of planned Individual Participant Data (IPD) meta-analysis projects, as they are often time-consuming and costly. We propose simulation-based power calculations utilising a two-stage framework, and illustrate the approach for a planned IPD meta-analysis of randomised trials with continuous outcomes where the aim is to identify treatment-covariate interactions. The simulation approach has four steps: (i) specify an underlying (data generating) statistical model for trials in the IPD meta-analysis; (ii) use readily available information (e.g. from publications) and prior knowledge (e.g. number of studies promising IPD) to specify model parameter values (e.g. control group mean, intervention effect, treatment-covariate interaction); (iii) simulate an IPD meta-analysis dataset of a particular size from the model, and apply a two-stage IPD meta-analysis to obtain the summary estimate of interest (e.g. interaction effect) and its associated p-value; (iv) repeat the previous step (e.g. thousands of times), then estimate the power to detect a genuine effect by the proportion of summary estimates with a significant p-value. In a planned IPD meta-analysis of lifestyle interventions to reduce weight gain in pregnancy, 14 trials (1183 patients) promised their IPD to examine a treatment-BMI interaction (i.e. whether baseline BMI modifies intervention effect on weight gain). Using our simulation-based approach, a two-stage IPD meta-analysis has < 60% power to detect a reduction of 1 kg weight gain for a 10-unit increase in BMI. Additional IPD from ten other published trials (containing 1761 patients) would improve power to over 80%, but only if a fixed-effect meta-analysis was appropriate. Pre-specified adjustment for prognostic factors would increase power further. Incorrect dichotomisation of BMI would reduce power by over 20%, similar to immediately throwing away IPD from ten trials. Simulation-based power calculations could inform the planning and funding of IPD projects, and should be used routinely.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 18%
Researcher 4 12%
Student > Doctoral Student 2 6%
Student > Postgraduate 2 6%
Student > Ph. D. Student 2 6%
Other 5 15%
Unknown 13 38%
Readers by discipline Count As %
Medicine and Dentistry 5 15%
Nursing and Health Professions 4 12%
Psychology 3 9%
Mathematics 2 6%
Social Sciences 2 6%
Other 3 9%
Unknown 15 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 May 2023.
All research outputs
#3,921,732
of 23,700,294 outputs
Outputs from BMC Medical Research Methodology
#614
of 2,097 outputs
Outputs of similar age
#75,381
of 330,393 outputs
Outputs of similar age from BMC Medical Research Methodology
#16
of 30 outputs
Altmetric has tracked 23,700,294 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,097 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.5. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,393 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.