↓ Skip to main content

Synthesis of graphene oxide-quaternary ammonium nanocomposite with synergistic antibacterial activity to promote infected wound healing

Overview of attention for article published in Burns & Trauma, May 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#39 of 304)
  • High Attention Score compared to outputs of the same age (81st percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

blogs
1 blog
twitter
6 X users

Citations

dimensions_citation
52 Dimensions

Readers on

mendeley
73 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Synthesis of graphene oxide-quaternary ammonium nanocomposite with synergistic antibacterial activity to promote infected wound healing
Published in
Burns & Trauma, May 2018
DOI 10.1186/s41038-018-0115-2
Pubmed ID
Authors

Tengfei Liu, Yuqing Liu, Menglong Liu, Ying Wang, Weifeng He, Gaoqiang Shi, Xiaohong Hu, Rixing Zhan, Gaoxing Luo, Malcolm Xing, Jun Wu

Abstract

Bacterial infection is one of the most common complications in burn, trauma, and chronic refractory wounds and is an impediment to healing. The frequent occurrence of antimicrobial-resistant bacteria due to irrational application of antibiotics increases treatment cost and mortality. Graphene oxide (GO) has been generally reported to possess high antimicrobial activity against a wide range of bacteria in vitro. In this study, a graphene oxide-quaternary ammonium salt (GO-QAS) nanocomposite was synthesized and thoroughly investigated for synergistic antibacterial activity, underlying antibacterial mechanisms and biocompatibility in vitro and in vivo. The GO-QAS nanocomposite was synthesized through amidation reactions of carboxylic group end-capped QAS polymers with primary amine-decorated GO to achieve high QAS loading ratios on nanosheets. Next, we investigated the antibacterial activity and biocompatibility of GO-QAS in vitro and in vivo. GO-QAS exhibited synergistic antibacterial activity against bacteria through not only mechanical membrane perturbation, including wrapping, bacterial membrane insertion, and bacterial membrane perforation, but also oxidative stress induction. In addition, it was found that GO-QAS could eradicate multidrug-resistant bacteria more effectively than conventional antibiotics. The in vitro and in vivo toxicity tests indicated that GO-QAS did not exhibit obvious toxicity towards mammalian cells or organs at low concentrations. Notably, GO-QAS topically applied on infected wounds maintained highly efficient antibacterial activity and promoted infected wound healing in vivo. The GO-QAS nanocomposite exhibits excellent synergistic antibacterial activity and good biocompatibility both in vitro and in vivo. The antibacterial mechanisms involve both mechanical membrane perturbation and oxidative stress induction. In addition, GO-QAS accelerated the healing process of infected wounds by promoting re-epithelialization and granulation tissue formation. Overall, the results indicated that the GO-QAS nanocomposite could be applied as a promising antimicrobial agent for infected wound management and antibacterial wound dressing synthesis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 73 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 73 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 19%
Student > Ph. D. Student 10 14%
Student > Master 8 11%
Student > Bachelor 7 10%
Professor > Associate Professor 4 5%
Other 9 12%
Unknown 21 29%
Readers by discipline Count As %
Medicine and Dentistry 10 14%
Engineering 6 8%
Materials Science 5 7%
Chemistry 5 7%
Biochemistry, Genetics and Molecular Biology 3 4%
Other 17 23%
Unknown 27 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 December 2022.
All research outputs
#3,333,217
of 25,382,440 outputs
Outputs from Burns & Trauma
#39
of 304 outputs
Outputs of similar age
#64,848
of 344,093 outputs
Outputs of similar age from Burns & Trauma
#2
of 10 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 304 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 344,093 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 8 of them.