↓ Skip to main content

Heterologous expression of flax PHOSPHOLIPID:DIACYLGLYCEROL CHOLINEPHOSPHOTRANSFERASE (PDCT) increases polyunsaturated fatty acid content in yeast and Arabidopsis seeds

Overview of attention for article published in BMC Biotechnology, June 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users
patent
3 patents
facebook
2 Facebook pages

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Heterologous expression of flax PHOSPHOLIPID:DIACYLGLYCEROL CHOLINEPHOSPHOTRANSFERASE (PDCT) increases polyunsaturated fatty acid content in yeast and Arabidopsis seeds
Published in
BMC Biotechnology, June 2015
DOI 10.1186/s12896-015-0156-6
Pubmed ID
Authors

Aruna D Wickramarathna, Rodrigo M P Siloto, Elzbieta Mietkiewska, Stacy D Singer, Xue Pan, Randall J Weselake

Abstract

Flax (Linum usitatissimum L.) is an agriculturally important crop with seed oil enriched in α-linolenic acid (18:3 (cisΔ9, 12, 15); ALA). This polyunsaturated fatty acid (PUFA) is the major determinant for the quality of flax seed oil in food, nutraceuticals and industrial applications. The recently identified enzyme: phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT), catalyzes the interconversion between phosphatidylcholine (PC) and diacylglycerol (DAG), and has been shown to play an important role in PUFA accumulation in Arabidopsis thaliana seeds. Two flax PDCT genes were identified using homology-based approach. In this study, we describe the isolation and characterization of two PDCT genes from flax (LuPDCT1 and LuPDCT2) with very high nucleotide sequence identity (97%) whose deduced amino acid sequences exhibited approximately 55% identity with that of A. thaliana PDCT (AtROD1). The genes encoded functionally active enzymes that were strongly expressed in developing embryos. Complementation studies with the A. thaliana rod1 mutant demonstrated that the flax PDCTs were capable of restoring PUFA levels in planta. Furthermore, PUFA levels increased in Saccharomyces cerevisiae when the flax PDCTs were co-expressed with FATTY ACID DESATURASES (FADs), FAD2 and FAD3, while seed-specific expression of LuPDCT1 and LuPDCT2 in A. thaliana resulted in 16.4% and 19.7% increases in C18-PUFAs, respectively, with a concomitant decrease in the proportion of oleic acid (18:1 (cisΔ9); OA). The two novel PDCT homologs from flax are capable of increasing C18-PUFA levels substantially in metabolically engineered yeast and transgenic A. thaliana seeds. These flax PDCT proteins appear to play an important dual role in the determination of PUFA content by efficiently channelling monounsaturated FAs into PC for desaturation and moving the resulting PUFAs out of PC for subsequent use in TAG synthesis. These results indicate that flax PDCTs would be useful for bioengineering of oil crops to increase PUFA levels for applications in human food and nutritional supplements, animal feed and industrial bioproducts.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 19%
Researcher 4 9%
Student > Master 4 9%
Student > Doctoral Student 4 9%
Professor 4 9%
Other 8 17%
Unknown 14 30%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 38%
Biochemistry, Genetics and Molecular Biology 7 15%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Unspecified 1 2%
Nursing and Health Professions 1 2%
Other 1 2%
Unknown 17 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 March 2020.
All research outputs
#5,802,253
of 23,312,088 outputs
Outputs from BMC Biotechnology
#338
of 946 outputs
Outputs of similar age
#65,624
of 263,960 outputs
Outputs of similar age from BMC Biotechnology
#31
of 45 outputs
Altmetric has tracked 23,312,088 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 946 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.8. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,960 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 45 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.