↓ Skip to main content

STAT4 controls GM-CSF production by both Th1 and Th17 cells during EAE

Overview of attention for article published in Journal of Neuroinflammation, June 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
45 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
STAT4 controls GM-CSF production by both Th1 and Th17 cells during EAE
Published in
Journal of Neuroinflammation, June 2015
DOI 10.1186/s12974-015-0351-3
Pubmed ID
Authors

Ian L. McWilliams, Rajani Rajbhandari, Susan Nozell, Etty Benveniste, Laurie E. Harrington

Abstract

In experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, mice genetically deficient in the transcription factor signal transducer and activator of transcription 4 (STAT4) are resistant to disease. In contrast, deletion or inhibition of the Th1-associated cytokines IL-12 or IFNγ which act upstream and downstream of STAT4, respectively, does not ameliorate disease. These discordant findings imply that STAT4 may act in a non-canonical role during EAE. Recently, STAT4 has been shown to regulate GM-CSF production by CD4 T cells and this cytokine is necessary for the induction of EAE. However, it is not known if STAT4 controls GM-CSF production by both Th1 and Th17 effector CD4 T cells. This study utilized the MOG35-55 peptide immunization model of EAE. Intracellular cytokine staining and novel mixed bone marrow chimeric mice were used to study the CD4 T cell-intrinsic role of STAT4 during disease. STAT4 chromatin-immunoprecipitation (ChIP-PCR) experiments were performed to show STAT4 directly interacts with the Csf2 gene loci. Herein, we demonstrate that STAT4 controls CD4 T cell-intrinsic GM-CSF production by both Th1 and Th17 CD4 T cells during EAE as well as in vitro. Importantly, we show that STAT4 interacts with the Csf2 locus in MOG35-55-activated effector CD4 T cells demonstrating direct modulation of GM-CSF. Overall, these studies illustrate a previously unrecognized role of STAT4 to regulate GM-CSF production by not only Th1 cells, but also Th17 effector CD4 T cell subsets during EAE pathogenesis. Critically, these data highlight for the first time that STAT4 is able to modulate the effector profile of Th17 CD4 T cell subsets, which redefines our current understanding of STAT4 as a Th1-centric factor.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 2%
Unknown 55 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 25%
Student > Doctoral Student 7 13%
Student > Bachelor 7 13%
Student > Master 5 9%
Researcher 3 5%
Other 9 16%
Unknown 11 20%
Readers by discipline Count As %
Immunology and Microbiology 12 21%
Agricultural and Biological Sciences 9 16%
Biochemistry, Genetics and Molecular Biology 8 14%
Medicine and Dentistry 7 13%
Neuroscience 5 9%
Other 3 5%
Unknown 12 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 July 2015.
All research outputs
#15,155,790
of 23,310,485 outputs
Outputs from Journal of Neuroinflammation
#1,696
of 2,692 outputs
Outputs of similar age
#146,101
of 263,958 outputs
Outputs of similar age from Journal of Neuroinflammation
#28
of 47 outputs
Altmetric has tracked 23,310,485 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,692 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,958 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.