↓ Skip to main content

Differences between fast and slow muscles in scallops revealed through proteomics and transcriptomics

Overview of attention for article published in BMC Genomics, May 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (61st percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
2 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differences between fast and slow muscles in scallops revealed through proteomics and transcriptomics
Published in
BMC Genomics, May 2018
DOI 10.1186/s12864-018-4770-2
Pubmed ID
Authors

Xiujun Sun, Zhihong Liu, Biao Wu, Liqing Zhou, Qi Wang, Wei Wu, Aiguo Yang

Abstract

Scallops possess striated and catch adductor muscles, which have different structure and contractile properties. The striated muscle contracts very quickly for swimming, whereas the smooth catch muscle can keep the shells closed for long periods with little expenditure of energy. In this study, we performed proteomic and transcriptomic analyses of differences between the striated (fast) and catch (slow) adductor muscles in Yesso scallop Patinopecten yessoensis. Transcriptomic analysis reveals 1316 upregulated and 8239 downregulated genes in slow compared to fast adductor muscle. For the same comparison, iTRAQ-based proteomics reveals 474 differentially expressed proteins (DEPs), 198 up- and 276 downregulated. These DEPs mainly comprise muscle-specific proteins of the sarcoplasmic reticulum, extracellular matrix, and metabolic pathways. A group of conventional muscle proteins-myosin heavy chain, myosin regulatory light chain, myosin essential light chain, and troponin-are enriched in fast muscle. In contrast, paramyosin, twitchin, and catchin are preferentially expressed in slow muscle. The association analysis of proteomic and transcriptomic data provides the evidences of regulatory events at the transcriptional and posttranscriptional levels in fast and slow muscles. Among 1236 differentially expressed unigenes, 22.7% show a similar regulation of mRNA levels and protein abundances. In contrast, more unigenes (53.2%) exhibit striking differences between gene expression and protein abundances in the two muscles, which indicates the existence of fiber-type specific, posttranscriptional regulatory events in most of myofibrillar proteins, such as myosin heavy chain, titin, troponin, and twitchin. This first, global view of protein and mRNA expression levels in scallop fast and slow muscles reveal that regulatory mechanisms at the transcriptional and posttranscriptional levels are essential in the maintenance of muscle structure and function. The existence of fiber-type specific, posttranscriptional regulatory mechanisms in myofibrillar proteins will greatly improve our understanding of the molecular basis of muscle contraction and its regulation in non-model invertebrates.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 19%
Student > Bachelor 1 6%
Professor 1 6%
Student > Master 1 6%
Researcher 1 6%
Other 1 6%
Unknown 8 50%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 31%
Biochemistry, Genetics and Molecular Biology 1 6%
Immunology and Microbiology 1 6%
Unknown 9 56%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 July 2021.
All research outputs
#7,345,736
of 23,881,329 outputs
Outputs from BMC Genomics
#3,321
of 10,793 outputs
Outputs of similar age
#123,755
of 332,210 outputs
Outputs of similar age from BMC Genomics
#83
of 256 outputs
Altmetric has tracked 23,881,329 research outputs across all sources so far. This one has received more attention than most of these and is in the 68th percentile.
So far Altmetric has tracked 10,793 research outputs from this source. They receive a mean Attention Score of 4.8. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,210 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.
We're also able to compare this research output to 256 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.