↓ Skip to main content

Serum reactome induced by Bordetella pertussis infection and Pertussis vaccines: qualitative differences in serum antibody recognition patterns revealed by peptide microarray analysis

Overview of attention for article published in BMC Immunology, July 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Serum reactome induced by Bordetella pertussis infection and Pertussis vaccines: qualitative differences in serum antibody recognition patterns revealed by peptide microarray analysis
Published in
BMC Immunology, July 2015
DOI 10.1186/s12865-015-0090-3
Pubmed ID
Authors

Davide Valentini, Giovanni Ferrara, Reza Advani, Hans O Hallander, Markus J Maeurer

Abstract

Pertussis (whooping cough) remains a public health problem despite extensive vaccination strategies. Better understanding of the host-pathogen interaction and the detailed B. pertussis (Bp) target recognition pattern will help in guided vaccine design. We characterized the specific epitope antigen recognition profiles of serum antibodies ('the reactome') induced by whooping cough and B. pertussis (Bp) vaccines from a case-control study conducted in 1996 in infants enrolled in a Bp vaccine trial in Sweden (Gustafsson, NEJM, 1996, 334, 349-355). Sera from children with whooping cough, vaccinated with Diphtheria Tetanus Pertussis (DTP) whole-cell (wc), acellular 5 (DPTa5), or with the 2 component (a2) vaccines and from infants receiving only DT (n = 10 for each group) were tested with high-content peptide microarrays containing 17 Bp proteins displayed as linear (n = 3175) peptide stretches. Slides were incubated with serum and peptide-IgG complexes detected with Cy5-labeled goat anti-human IgG and analyzed using a GenePix 4000B microarray scanner, followed by statistical analysis, using PAM (Prediction Analysis for Microarrays) and the identification of uniquely recognized peptide epitopes. 367/3,085 (11.9%) peptides were recognized in 10/10 sera from children with whooping cough, 239 (7.7%) in DTPwc, 259 (8.4%) in DTPa5, 105 (3.4%) DTPa2, 179 (5.8%) in the DT groups. Recognition of strongly recognized peptides was similar between whooping cough and DPTwc, but statistically different between whooping cough vs. DTPa5 (p < 0.05), DTPa2 and DT (p < 0.001 vs. both) vaccines. 6/3,085 and 2/3,085 peptides were exclusively recognized in (10/10) sera from children with whooping cough and DTPa2 vaccination, respectively. DTPwc resembles more closely the whooping cough reactome as compared to acellular vaccines. We could identify a unique recognition signature common for each vaccination group (10/10 children). Peptide microarray technology allows detection of subtle differences in epitope signature responses and may help to guide rational vaccine development by the objective description of a clinically relevant immune response that confers protection against infectious pathogens.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 17%
Researcher 5 14%
Professor 3 9%
Student > Bachelor 2 6%
Student > Master 2 6%
Other 4 11%
Unknown 13 37%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 11%
Medicine and Dentistry 3 9%
Biochemistry, Genetics and Molecular Biology 3 9%
Immunology and Microbiology 3 9%
Chemistry 2 6%
Other 5 14%
Unknown 15 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 July 2015.
All research outputs
#20,282,766
of 22,816,807 outputs
Outputs from BMC Immunology
#502
of 587 outputs
Outputs of similar age
#219,657
of 263,437 outputs
Outputs of similar age from BMC Immunology
#13
of 15 outputs
Altmetric has tracked 22,816,807 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 587 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,437 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.