↓ Skip to main content

Resveratrol induces autophagy-dependent apoptosis in HL-60 cells

Overview of attention for article published in BMC Cancer, May 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
60 Dimensions

Readers on

mendeley
49 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Resveratrol induces autophagy-dependent apoptosis in HL-60 cells
Published in
BMC Cancer, May 2018
DOI 10.1186/s12885-018-4504-5
Pubmed ID
Authors

Yingying Fan, Jen-Fu Chiu, Jing Liu, Yan Deng, Cheng Xu, Jun Zhang, Guanwu Li

Abstract

All known mechanisms of apoptosis induced by resveratrol act through cell cycle arrest and changes in mitochondrial membrane potential. It is currently unknown whether resveratrol-induced apoptosis is associated with other physiological processes, such as autophagy. Apoptosis-related markers involved in the intrinsic and extrinsic apoptotic pathways, and autophagic markers were detected by using western blotting and immunofluorescence. Mitochondrial membrane potential was assayed by flow cytometry. Pharmaceutical or genetic inhibition of autophagy involved were carried by 3- methyladenine or knockdown of autophagy-related (Atg) genes by siRNA. Differences between two values were tested by Student's unpaired t test. We show that resveratrol-induced apoptosis occurs through both the intrinsic and extrinsic apoptotic pathways. Mitochondrial membrane potential and apoptosis-related markers, such as an increased Bax/Bcl-2 ratio, and cleaved forms of caspase-8 and caspase-3, arise following resveratrol addition. Moreover, we find that resveratrol increases both the levels of microtubule-associated protein 1 light chain 3-II and the number of autophagosomes, and further demonstrate that resveratrol-induced autophagy depends on the LKB1-AMPK-mTOR pathway. We next reveal that some apoptosis-related markers induced by resveratrol are further attenuated by the inhibition of autophagy with 3-methyladenine or knockdown of autophagy-related (Atg) genes by siRNA. These results suggest that resveratrol induced apoptotic cell death of HL-60 cells depends on the autophagy activated through both the LKB1-AMPK and PI3K/AKT-regulated mTOR signaling pathways.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 49 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 22%
Student > Ph. D. Student 6 12%
Student > Doctoral Student 5 10%
Researcher 4 8%
Other 3 6%
Other 6 12%
Unknown 14 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 18%
Medicine and Dentistry 4 8%
Pharmacology, Toxicology and Pharmaceutical Science 3 6%
Neuroscience 2 4%
Nursing and Health Professions 2 4%
Other 8 16%
Unknown 21 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 May 2018.
All research outputs
#20,504,518
of 23,070,218 outputs
Outputs from BMC Cancer
#6,543
of 8,375 outputs
Outputs of similar age
#289,731
of 330,078 outputs
Outputs of similar age from BMC Cancer
#150
of 185 outputs
Altmetric has tracked 23,070,218 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,375 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,078 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 185 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.