↓ Skip to main content

Patterns of natural selection acting on the mitochondrial genome of a locally adapted fish species

Overview of attention for article published in Genetics Selection Evolution, July 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
148 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Patterns of natural selection acting on the mitochondrial genome of a locally adapted fish species
Published in
Genetics Selection Evolution, July 2015
DOI 10.1186/s12711-015-0138-0
Pubmed ID
Authors

Sofia Consuegra, Elgan John, Eric Verspoor, Carlos Garcia de Leaniz

Abstract

Mitochondrial DNA (mtDNA) is frequently used in population genetic studies and is usually considered as a neutral marker. However, given the functional importance of the proteins encoded by the mitochondrial genome, and the prominent role of mitochondria in cellular energy production, the assumption of neutrality is increasingly being questioned. We tested for evidence of selection on the mitochondrial genome of the Atlantic salmon, which is a locally adapted and widely farmed species and is distributed across a large latitudinal cline. We analysed 20 independent regions of the salmon mtDNA that represented nine genes (ND1, ND2, ND3, COX1, COX2, ATP6, ND4, ND5, and CYTB). These 20 mtDNA regions were sequenced using a 454 approach from samples collected across the entire European range of this species. We found evidence of positive selection at the ND1, ND3 and ND4 genes, which is supported by at least two different codon-based methods and also by differences in the chemical properties of the amino acids involved. The geographical distribution of some of the mutations indicated to be under selection was not random, and some mutations were private to artic populations. We discuss the possibility that selection acting on the Atlantic salmon mtDNA genome might be related to the need for increased metabolic efficiency at low temperatures. The analysis of sequences representing nine mitochondrial genes that are involved in the OXPHOS pathway revealed signatures of positive selection in the mitochondrial genome of the Atlantic salmon. The properties of the amino acids involved suggest that some of the mutations that were identified to be under positive selection might have functional implications, possibly in relation to metabolic efficiency. Experimental evidence, and better understanding of regional phylogeographic structuring, are needed to clarify the potential role of selection acting on the mitochondrial genome of Atlantic salmon and other locally adapted fishes.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 148 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 <1%
India 1 <1%
Switzerland 1 <1%
Unknown 145 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 30 20%
Student > Ph. D. Student 25 17%
Student > Master 22 15%
Student > Bachelor 18 12%
Student > Doctoral Student 10 7%
Other 21 14%
Unknown 22 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 69 47%
Biochemistry, Genetics and Molecular Biology 38 26%
Environmental Science 7 5%
Unspecified 1 <1%
Arts and Humanities 1 <1%
Other 4 3%
Unknown 28 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 July 2015.
All research outputs
#20,657,128
of 25,374,917 outputs
Outputs from Genetics Selection Evolution
#667
of 822 outputs
Outputs of similar age
#202,286
of 276,901 outputs
Outputs of similar age from Genetics Selection Evolution
#13
of 14 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 822 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 6th percentile – i.e., 6% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 276,901 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.