↓ Skip to main content

Gut microbes contribute to variation in solid organ transplant outcomes in mice

Overview of attention for article published in Microbiome, May 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

news
1 news outlet
blogs
1 blog
twitter
27 X users

Citations

dimensions_citation
52 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Gut microbes contribute to variation in solid organ transplant outcomes in mice
Published in
Microbiome, May 2018
DOI 10.1186/s40168-018-0474-8
Pubmed ID
Authors

Christine M. McIntosh, Luqiu Chen, Alon Shaiber, A. Murat Eren, Maria-Luisa Alegre

Abstract

Solid organ transplant recipients show heterogeneity in the occurrence and timing of acute rejection episodes. Understanding the factors responsible for such variability in patient outcomes may lead to improved diagnostic and therapeutic approaches. Rejection kinetics of transplanted organs mainly depends on the extent of genetic disparities between donor and recipient, but a role for environmental factors is emerging. We have recently shown that major alterations of the microbiota following broad-spectrum antibiotics, or use of germ-free animals, promoted longer skin graft survival in mice. Here, we tested whether spontaneous differences in microbial colonization between genetically similar individuals can contribute to variability in graft rejection kinetics. We compared rejection kinetics of minor mismatched skin grafts in C57BL/6 mice from Jackson Laboratory (Jax) and Taconic Farms (Tac), genetically similar animals colonized by different commensal microbes. Female Tac mice rejected skin grafts from vendor-matched males more quickly than Jax mice. We observed prolonged graft survival in Tac mice when they were exposed to Jax mice microbiome through co-housing or fecal microbiota transplantation (FMT) by gastric gavage. In contrast, exposure to Tac mice did not change graft rejection kinetics in Jax mice, suggesting a dominant suppressive effect of Jax microbiota. High-throughput sequencing of 16S rRNA gene amplicons from Jax and Tac mice fecal samples confirmed a convergence of microbiota composition after cohousing or fecal transfer. Our analysis of amplicon data associated members of a single bacterial genus, Alistipes, with prolonged graft survival. Consistent with this finding, members of the genus Alistipes were absent in a separate Tac cohort, in which fecal transfer from Jax mice failed to prolong graft survival. These results demonstrate that differences in resident microbiome in healthy individuals may translate into distinct kinetics of graft rejection, and contribute to interpersonal variability in graft outcomes. The association between Alistipes and prolonged skin graft survival in mice suggests that members of this genus might affect host physiology, including at sites distal to the gastrointestinal tract. Overall, these findings allude to a potential therapeutic role for specific gut microbes to promote graft survival through the administration of probiotics, or FMT.

X Demographics

X Demographics

The data shown below were collected from the profiles of 27 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 23%
Researcher 10 18%
Other 5 9%
Student > Doctoral Student 4 7%
Student > Bachelor 3 5%
Other 8 14%
Unknown 13 23%
Readers by discipline Count As %
Immunology and Microbiology 12 21%
Agricultural and Biological Sciences 10 18%
Medicine and Dentistry 8 14%
Biochemistry, Genetics and Molecular Biology 6 11%
Nursing and Health Professions 2 4%
Other 4 7%
Unknown 14 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 28. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 September 2023.
All research outputs
#1,310,182
of 24,363,506 outputs
Outputs from Microbiome
#446
of 1,637 outputs
Outputs of similar age
#28,997
of 334,977 outputs
Outputs of similar age from Microbiome
#23
of 62 outputs
Altmetric has tracked 24,363,506 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,637 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 39.0. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,977 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 62 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.