↓ Skip to main content

Co-targeting of Cyclooxygenase-2 and FoxM1 is a viable strategy in inducing anticancer effects in colorectal cancer cells

Overview of attention for article published in Molecular Cancer, July 2015
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • One of the highest-scoring outputs from this source (#7 of 1,958)
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (98th percentile)

Mentioned by

twitter
184 X users

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Co-targeting of Cyclooxygenase-2 and FoxM1 is a viable strategy in inducing anticancer effects in colorectal cancer cells
Published in
Molecular Cancer, July 2015
DOI 10.1186/s12943-015-0406-1
Pubmed ID
Authors

Maqbool Ahmed, Azhar R Hussain, Abdul K. Siraj, Shahab Uddin, Nasser Al-Sanea, Fouad Al-Dayel, Mohammed Al-Assiri, Shaham Beg, Khawla S. Al-Kuraya

Abstract

Cross-talk between deregulated signaling pathways in cancer cells causes uncontrolled growth and proliferation. These cancers cells become more aggressive and quickly develop resistance to therapy. Therefore targeting of these deregulated pathways simultaneously can result in efficient cell death of cancer cells. In this study we investigated co-expression of Cox-2 and FoxM1 in a cohort of colorectal carcinoma (CRC) samples and also examined whether inhibition of Cox-2 and FoxM1 simultaneously can lead to inhibition of cell viability and induction of apoptosis in colorectal cancer cell lines and in vivo xenografts. Protein expression of Cox-2 and FoxM1 was determined in a large cohort of 770 clinical CRC samples in a tissue micro-array format by immunohistochemistry. Cell death was measured using live dead assay. Apoptosis was measured by annexin V/PI dual staining. Immunoblotting was performed to examine the expression of proteins. Calcusyn software was utilized to estimate the synergistic doses using chou and Talalay method. Co-expression of Cox-2 and FoxM1 was detected in 33.3 % (232/697) of CRC's and associated with an aggressive phenotype characterized by younger age (p = 0.0191), high proliferative index marker; Ki-67 (p = 0.004) and MMP-9 (p = 0.0116) as well as activation of AKT (p = 0.0214). In vitro, inhibition of FoxM1 and Cox-2 with pharmacological inhibitors; Thiostrepton and NS398 resulted in efficient down-regulation of FoxM1 and Cox-2 expression along with in-activation of AKT and inhibition of colony formation, invasion and migratory capability of CRC cells. In addition, there was also inhibition of cell viability and induction of apoptosis via the mitochondrial apoptotic pathway in CRC cell lines. Finally, treatment of CRC xenograft tumors in nude mice with combination of Cox-2 and FoxM1 inhibitors inhibited tumor growth significantly via down-regulation of Cox-2 and FoxM1 expression. These findings demonstrate that co-expression of Cox-2 and FoxM1 might play a critical role in the pathogenesis of CRC. Therefore, targeting of these pathways simultaneously with sub toxic doses of pharmacological inhibitors can be a potential therapeutic approach for the treatment of this subset of CRC.

X Demographics

X Demographics

The data shown below were collected from the profiles of 184 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 21%
Student > Bachelor 4 10%
Researcher 4 10%
Student > Postgraduate 3 7%
Student > Master 2 5%
Other 4 10%
Unknown 16 38%
Readers by discipline Count As %
Medicine and Dentistry 7 17%
Biochemistry, Genetics and Molecular Biology 6 14%
Agricultural and Biological Sciences 3 7%
Chemistry 3 7%
Immunology and Microbiology 1 2%
Other 3 7%
Unknown 19 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 145. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 May 2018.
All research outputs
#291,187
of 25,758,695 outputs
Outputs from Molecular Cancer
#7
of 1,958 outputs
Outputs of similar age
#2,941
of 278,063 outputs
Outputs of similar age from Molecular Cancer
#1
of 51 outputs
Altmetric has tracked 25,758,695 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,958 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 278,063 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 98% of its contemporaries.