↓ Skip to main content

Molecular, proteomic and immunological parameters of allergens provide inclusion criteria for new candidates within established grass and tree homologous groups

Overview of attention for article published in World Allergy Organization Journal, July 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

news
2 news outlets
twitter
16 X users
facebook
2 Facebook pages
googleplus
1 Google+ user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular, proteomic and immunological parameters of allergens provide inclusion criteria for new candidates within established grass and tree homologous groups
Published in
World Allergy Organization Journal, July 2015
DOI 10.1186/s40413-015-0069-9
Pubmed ID
Authors

Matthew D Heath, Joe Collis, Toby Batten, James W Hutchings, Nicola Swan, Murray A Skinner

Abstract

Our knowledge of allergen structure and function continues to rise and new scientific data on the homology and cross-reactivity of allergen sources should be considered to extend the work of Lorenz et al., 2009 (Int Arch Allergy Immunol. 148(1):1-1, 2009) and the concept of homologous groups. In addition to this, sophisticated techniques such as mass spectrometry (MS) are increasingly utilised to better characterise the complex mix and nature of allergen extracts. Homology models were used of Fag s 1 (Beech) and Cyn d 1 (Bermuda grass) and compared with template crystal structures of Bet v 1 and Phl p 1 from the 'exemplar' species of Birch and Timothy grass, respectively. ELISA experiments were performed to assess cross-reactivity of Beech (tree) and Bermuda (grass) extracts to rabbit sera raised to either "3-Tree" (Birch, Alder and Hazel) extract or "Grass" (12-grass mix extract), respectively. The comparability of biochemical stability of different allergen sources was assessed through statistical methods for a range of tree and grass species. Allergen cross-reactivity and/or structural homology have been described providing justification for inclusion of Beech within the Birch homologous tree group. Data from Bermuda grass (Cyn d 1) provides further justification for the inclusion of this species into the homologous group of the sweet grasses. However, further characterisation of relevant allergens from Bermuda grass and, in particular, comparison of cross-reactive patterns between subjects specifically in areas with high abundance of both Pooideae and Chloridoideae is sought. MS allows the possibility to identify individual proteins or allergens from complex mixes by mass and/or sequence, and this has been extensively applied to the allergen field. New data on the homology, cross-reactivity and biological parameters of allergen sources have been considered to extend the work of Lorenz et al., 2009 in the context of tree and grass species. The concept of homologous groups is certainly dynamic allowing the flexibility and potential in streamlining quality parameters, such as stability profiles, due to extrapolation of exemplar data to a wider range of allergens.

X Demographics

X Demographics

The data shown below were collected from the profiles of 16 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 29%
Other 3 21%
Student > Bachelor 2 14%
Student > Postgraduate 2 14%
Student > Ph. D. Student 1 7%
Other 1 7%
Unknown 1 7%
Readers by discipline Count As %
Medicine and Dentistry 6 43%
Agricultural and Biological Sciences 2 14%
Biochemistry, Genetics and Molecular Biology 1 7%
Mathematics 1 7%
Business, Management and Accounting 1 7%
Other 2 14%
Unknown 1 7%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 26. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 August 2015.
All research outputs
#1,466,967
of 25,373,627 outputs
Outputs from World Allergy Organization Journal
#54
of 891 outputs
Outputs of similar age
#18,052
of 276,290 outputs
Outputs of similar age from World Allergy Organization Journal
#4
of 10 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 891 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.2. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 276,290 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 6 of them.