↓ Skip to main content

Identification of putative drug targets for human sperm-egg interaction defect using protein network approach

Overview of attention for article published in BMC Systems Biology, July 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of putative drug targets for human sperm-egg interaction defect using protein network approach
Published in
BMC Systems Biology, July 2015
DOI 10.1186/s12918-015-0186-7
Pubmed ID
Authors

Soudabeh Sabetian, Mohd Shahir Shamsir

Abstract

Sperm-egg interaction defect is a significant cause of in-vitro fertilization failure for infertile cases. Numerous molecular interactions in the form of protein-protein interactions mediate the sperm-egg membrane interaction process. Recent studies have demonstrated that in addition to experimental techniques, computational methods, namely protein interaction network approach, can address protein-protein interactions between human sperm and egg. Up to now, no drugs have been detected to treat sperm-egg interaction disorder, and the initial step in drug discovery research is finding out essential proteins or drug targets for a biological process. The main purpose of this study is to identify putative drug targets for human sperm-egg interaction deficiency and consider if the detected essential proteins are targets for any known drugs using protein-protein interaction network and ingenuity pathway analysis. We have created human sperm-egg protein interaction networks with high confidence, including 106 nodes and 415 interactions. Through topological analysis of the network with calculation of some metrics, such as connectivity and betweenness centrality, we have identified 13 essential proteins as putative drug targets. The potential drug targets are from integrins, fibronectins, epidermal growth factor receptors, collagens and tetraspanins protein families. We evaluated these targets by ingenuity pathway analysis, and the known drugs for the targets have been detected, and the possible effective role of the drugs on sperm-egg interaction defect has been considered. These results showed that the drugs ocriplasmin (Jetrea©), gefitinib (Iressa©), erlotinib hydrochloride (Tarceva©), clingitide, cetuximab (Erbitux©) and panitumumab (Vectibix©) are possible candidates for efficacy testing for the treatment of sperm-egg interaction deficiency. Further experimental validation can be carried out to confirm these results. We have identified the first potential list of drug targets for human sperm-egg interaction defect using the protein interaction network approach. The essential proteins or potential drug targets were found using topological analysis of the protein network. These putative targets are promising for further experimental validation. These study results, if validated, may develop drug discovery techniques for sperm-egg interaction defect and also improve assisted reproductive technologies to avoid in-vitro fertilization failure.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 4%
Unknown 27 96%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 14%
Researcher 4 14%
Student > Ph. D. Student 4 14%
Other 3 11%
Student > Bachelor 2 7%
Other 4 14%
Unknown 7 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 32%
Agricultural and Biological Sciences 4 14%
Pharmacology, Toxicology and Pharmaceutical Science 2 7%
Medicine and Dentistry 2 7%
Computer Science 1 4%
Other 3 11%
Unknown 7 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 March 2016.
All research outputs
#15,340,005
of 22,817,213 outputs
Outputs from BMC Systems Biology
#644
of 1,142 outputs
Outputs of similar age
#154,412
of 263,985 outputs
Outputs of similar age from BMC Systems Biology
#20
of 30 outputs
Altmetric has tracked 22,817,213 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,142 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 32nd percentile – i.e., 32% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,985 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.