↓ Skip to main content

Targeting mTOR/p70S6K/glycolysis signaling pathway restores glucocorticoid sensitivity to 4E-BP1 null Burkitt Lymphoma

Overview of attention for article published in BMC Cancer, July 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Targeting mTOR/p70S6K/glycolysis signaling pathway restores glucocorticoid sensitivity to 4E-BP1 null Burkitt Lymphoma
Published in
BMC Cancer, July 2015
DOI 10.1186/s12885-015-1535-z
Pubmed ID
Authors

Ling Gu, Liping Xie, Chuan Zuo, Zhigui Ma, Yanle Zhang, Yiping Zhu, Ju Gao

Abstract

Increasing evidence indicates that rapamycin could be used as a potential glucocorticoid (GC) sensitizer in lymphoblastic malignancies via genetic prevention of 4E-BP1 phosphorylation. Interestingly, we found that combined rapamycin with dexamethasone can effectively reverse GC resistance in 4E-BP1 null lymphoma cells. In this study, we investigated the potential link between mTOR/p70S6K signaling pathway, glycolysis, autophagy and GC resistance. Antitumor effects of the combination of rapamycin and dexamethasone were evaluated on cell viability by MTT assay and in vivo studies, on cell cycle and apoptosis by flow cytometry, on autophagy by western blot, MDC staining and transmission electron microscopy and on cell signaling by western blot. Moreover, to test whether inhibiting glycolysis is the core mechanism in rapamycin restoring GC sensitivity, we took glycolysis inhibitor 2-deoxyglucose to replace rapamycin and then evaluated the antitumor effects in vitro. Raji cells are resistant to rapamycin (IC50 > 1000 nM) or dexamethasone (IC50 > 100 μM) treatment alone. The combination of rapamycin and dexamethasone synergistically inhibited the viability of Raji cells in vitro and in vivo by inducing caspase-dependent and -independent cell death and G0/G1 cell cycle arrest. These effects were achieved by the inhibition of mTOR/p70S6K signaling pathway, which led to the inhibition of glycolysis and the induction of autophagy. Pretreatment with pan-caspase inhibitor z-VAD-fmk or autophagy inhibitor 3-MA failed to protect the cells from combined treatment-induced death. Glycolysis inhibitor combined with dexamethasone produced a similar antitumor effects in vitro. Inhibition of mTOR/p70S6K/glycolysis signaling pathway is the key point of therapy in reversing GC resistant in Burkitt lymphoma patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 18%
Student > Master 6 16%
Researcher 6 16%
Student > Doctoral Student 4 11%
Professor 3 8%
Other 8 21%
Unknown 4 11%
Readers by discipline Count As %
Medicine and Dentistry 11 29%
Biochemistry, Genetics and Molecular Biology 9 24%
Agricultural and Biological Sciences 4 11%
Engineering 2 5%
Business, Management and Accounting 1 3%
Other 5 13%
Unknown 6 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 July 2015.
All research outputs
#14,818,555
of 22,817,213 outputs
Outputs from BMC Cancer
#3,668
of 8,300 outputs
Outputs of similar age
#145,193
of 264,028 outputs
Outputs of similar age from BMC Cancer
#72
of 148 outputs
Altmetric has tracked 22,817,213 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,300 research outputs from this source. They receive a mean Attention Score of 4.3. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,028 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 148 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.