↓ Skip to main content

Role of membrane Hsp70 in radiation sensitivity of tumor cells

Overview of attention for article published in Radiation Oncology, July 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
56 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Role of membrane Hsp70 in radiation sensitivity of tumor cells
Published in
Radiation Oncology, July 2015
DOI 10.1186/s13014-015-0461-1
Pubmed ID
Authors

Naoya Murakami, Annett Kühnel, Thomas E. Schmid, Katarina Ilicic, Stefan Stangl, Isabella S. Braun, Mathias Gehrmann, Michael Molls, Jun Itami, Gabriele Multhoff

Abstract

The major stress-inducible heat shock protein 70 (Hsp70) is frequently overexpressed in the cytosol and integrated in the plasma membrane of tumor cells via lipid anchorage. Following stress such as non-lethal irradiation Hsp70 synthesis is up-regulated. Intracellular located Hsp70 is known to exert cytoprotective properties, however, less is known about membrane (m)Hsp70. Herein, we investigate the role of mHsp70 in the sensitivity towards irradiation in tumor sublines that differ in their cytosolic and/or mHsp70 levels. The isogenic human colon carcinoma sublines CX(+) with stable high and CX(-) with stable low expression of mHsp70 were generated by fluorescence activated cell sorting, the mouse mammary carcinoma sublines 4 T1 (4 T1 ctrl) and Hsp70 knock-down (4 T1 Hsp70 KD) were produced using the CRISPR/Cas9 system, and the Hsp70 down-regulation in human lung carcinoma sublines H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/EPLC-272H HSF-1 KD was achieved by small interfering (si)RNA against Heat shock factor 1 (HSF-1). Cytosolic and mHsp70 was quantified by Western blot analysis/ELISA and flow cytometry; double strand breaks (DSBs) and apoptosis were measured by flow cytometry using antibodies against γH2AX and real-time PCR (RT-PCR) using primers and antibodies directed against apoptosis related genes; and radiation sensitivity was determined using clonogenic cell surviving assays. CX(+)/CX(-) tumor cells exhibited similar cytosolic but differed significantly in their mHsp70 levels, 4 T1 ctrl/4 T1 Hsp70 KD cells showed significant differences in their cytosolic and mHsp70 levels and H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/EPLC-272H HSF-1 KD lung carcinoma cell sublines had similar mHsp70 but significantly different cytosolic Hsp70 levels. γH2AX was significantly up-regulated in irradiated CX(-) and 4 T1 Hsp70 KD with low basal mHsp70 levels, but not in their mHsp70 high expressing counterparts, irrespectively of their cytosolic Hsp70 content. After irradiation γH2AX, Caspase 3/7 and Annexin V were up-regulated in the lung carcinoma sublines, but no significant differences were observed in H1339 ctrl/H1339 HSF-1 KD, and EPLC-272H ctrl/EPLC-272H HSF-1 KD that exhibit identical mHsp70 but different cytosolic Hsp70 levels. Clonogenic cell survival was significantly lower in CX(-) and 4 T1 Hsp70 KD cells with low mHsp70 expression, than in CX+ and 4 T1 ctrl cells, whereas no difference in clonogenic cell survival was observed in H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/ EPLC-272H HSF-1 KD sublines with identical mHsp70 but different cytosolic Hsp70 levels. In summary, our results indicate that mHsp70 has an impact on radiation resistance.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 24%
Student > Master 9 16%
Student > Doctoral Student 5 9%
Student > Bachelor 3 5%
Researcher 3 5%
Other 8 15%
Unknown 14 25%
Readers by discipline Count As %
Medicine and Dentistry 15 27%
Biochemistry, Genetics and Molecular Biology 10 18%
Agricultural and Biological Sciences 5 9%
Pharmacology, Toxicology and Pharmaceutical Science 4 7%
Psychology 2 4%
Other 6 11%
Unknown 13 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 March 2016.
All research outputs
#14,818,555
of 22,817,213 outputs
Outputs from Radiation Oncology
#904
of 2,055 outputs
Outputs of similar age
#145,065
of 263,986 outputs
Outputs of similar age from Radiation Oncology
#35
of 58 outputs
Altmetric has tracked 22,817,213 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,055 research outputs from this source. They receive a mean Attention Score of 2.7. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,986 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 58 others from the same source and published within six weeks on either side of this one. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.