↓ Skip to main content

The serine/threonine kinase 33 is present and expressed in palaeognath birds but has become a unitary pseudogene in neognaths about 100 million years ago

Overview of attention for article published in BMC Genomics, July 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The serine/threonine kinase 33 is present and expressed in palaeognath birds but has become a unitary pseudogene in neognaths about 100 million years ago
Published in
BMC Genomics, July 2015
DOI 10.1186/s12864-015-1769-9
Pubmed ID
Authors

Tobias Lautwein, Steffen Lerch, Daniel Schäfer, Erwin R. Schmidt

Abstract

Serine/threonine kinase 33 (STK33) has been shown to be conserved across all major vertebrate classes including reptiles, mammals, amphibians and fish, suggesting its importance within vertebrates. It has been shown to phosphorylate vimentin and might play a role in spermatogenesis and organ ontogenesis. In this study we analyzed the genomic locus and expression of stk33 in the class Aves, using a combination of large scale next generation sequencing data analysis and traditional PCR. Within the subclass Palaeognathae we analyzed the white-throated tinamou (Tinamus guttatus), the African ostrich (Struthio camelus) and the emu (Dromaius novaehollandiae). For the African ostrich we were able to generate a 62,778 bp long genomic contig and an mRNA sequence that encodes a protein showing highly significant similarity to STK33 proteins from other vertebrates. The emu has been shown to encode and transcribe a functional STK33 as well. For the white-throated tinamou we were able to identify 13 exons by sequence comparison encoding a protein similar to STK33 as well. In contrast, in all 28 neognath birds analyzed, we could not find evidence for the existence of a functional copy of stk33 or its expression. In the genomes of these 28 bird species, we found only remnants of the stk33 locus carrying several large genomic deletions, leading to the loss of multiple exons. The remaining exons have acquired various indels and premature stop codons. We were able to elucidate and describe the genomic structure and the transcription of a functional stk33 gene within the subclass Palaeognathae, but we could only find degenerate remnants of stk33 in all neognath birds analyzed. This led us to the conclusion that stk33 became a unitary pseudogene in the evolutionary history of the class Aves at the paleognath-neognath branch point during the late cretaceous period about 100 million years ago. We hypothesize that the pseudogenization of stk33 might have become fixed in neognaths due to either genetic redundancy or a non-orthologous gene displacement and present potential candidate genes for such an incident.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 22%
Librarian 1 11%
Student > Ph. D. Student 1 11%
Student > Bachelor 1 11%
Student > Master 1 11%
Other 1 11%
Unknown 2 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 44%
Environmental Science 1 11%
Computer Science 1 11%
Agricultural and Biological Sciences 1 11%
Unknown 2 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 July 2015.
All research outputs
#14,231,810
of 22,817,213 outputs
Outputs from BMC Genomics
#5,701
of 10,653 outputs
Outputs of similar age
#135,715
of 263,982 outputs
Outputs of similar age from BMC Genomics
#171
of 266 outputs
Altmetric has tracked 22,817,213 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,653 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,982 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 266 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.