↓ Skip to main content

Nicotine attenuates the effect of HIV-1 proteins on the neural circuits of working and contextual memories

Overview of attention for article published in Molecular Brain, July 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

news
1 news outlet
twitter
4 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Nicotine attenuates the effect of HIV-1 proteins on the neural circuits of working and contextual memories
Published in
Molecular Brain, July 2015
DOI 10.1186/s13041-015-0134-x
Pubmed ID
Authors

Tanseli Nesil, Junran Cao, Zhongli Yang, Sulie L. Chang, Ming D. Li

Abstract

Human immunodeficiency virus (HIV)-1-associated neurocognitive disorders (HAND) are characterized by synaptic damage and neuronal loss in the brain. Excessive glutamatergic transmission and loss of cholinergic neurons are the major indicators of HAND. Nicotine acts as a cholinergic channel modulator, and its cognitive-enhancing effect in neurodegenerative and cognitive disorders has been documented. However, it is unclear whether nicotine has any positive effect on memory and synaptic plasticity formation in HAND. We investigated the effects of nicotine on synaptic plasticity and hippocampus-prefrontal cortex (PFC)-amygdala-dependent memory formation in the HIV-1 transgenic (Tg) and F344 control rats. Chronic nicotine treatment (0.4 mg/kg nicotine, base, subcutaneously) significantly attenuated the cognitive deficits in the HIV-1Tg rats in both the spatial and contextual fear memories but impaired the contextual learning memory in the F344 rats. To determine the role of nicotine in the synaptic dysfunction caused by HIV-1 proteins, we analyzed the expression of key representative genes related to synaptic plasticity in the hippocampus, PFC, and amygdala of the HIV-1Tg and F344 rats using a custom-designed qRT-PCR array. The HIV-1 proteins significantly altered the glutamate receptor-mediated intracellular calcium cascade and its downstream signaling cascade in a brain region-specific manner. Further, chronic nicotine treatment reversed the effect of HIV-1 proteins on the expression of genes involved in synaptic plasticity in the three brain regions. The effects of nicotine differed significantly in the HIV-1Tg and F344 rats. Our findings indicate that nicotine can attenuate the effect of HIV viral proteins on cognitive function and produce a brain region- and strain-specific effect on the intracellular signaling cascades involved in synaptic plasticity and memory formation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 16%
Student > Bachelor 3 10%
Researcher 3 10%
Student > Ph. D. Student 3 10%
Student > Doctoral Student 2 6%
Other 6 19%
Unknown 9 29%
Readers by discipline Count As %
Medicine and Dentistry 5 16%
Agricultural and Biological Sciences 3 10%
Neuroscience 2 6%
Nursing and Health Professions 2 6%
Psychology 2 6%
Other 6 19%
Unknown 11 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 August 2015.
All research outputs
#2,566,050
of 22,817,213 outputs
Outputs from Molecular Brain
#97
of 1,106 outputs
Outputs of similar age
#34,306
of 263,414 outputs
Outputs of similar age from Molecular Brain
#3
of 15 outputs
Altmetric has tracked 22,817,213 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,106 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,414 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.