↓ Skip to main content

Re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection

Overview of attention for article published in BMC Plant Biology, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
79 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection
Published in
BMC Plant Biology, June 2018
DOI 10.1186/s12870-018-1332-3
Pubmed ID
Authors

Jinyan Wang, Yuwen Yang, Lamei Jin, Xitie Ling, Tingli Liu, Tianzi Chen, Yinghua Ji, Wengui Yu, Baolong Zhang

Abstract

Long Noncoding-RNAs (LncRNAs) are known to be involved in some biological processes, but their roles in plant-virus interactions remain largely unexplored. While circular RNAs (circRNAs) have been studied in animals, there has yet to be extensive research on them in a plant system, especially in tomato-tomato yellow leaf curl virus (TYLCV) interaction. In this study, RNA transcripts from the susceptible tomato line JS-CT-9210 either infected with TYLCV or untreated, were sequenced in a pair-end strand-specific manner using ribo-zero rRNA removal library method. A total of 2056 lncRNAs including 1767 long intergenic non-coding RNA (lincRNAs) and 289 long non-coding natural antisense transcripts (lncNATs) were obtained. The expression patterns in lncRNAs were similar in susceptible tomato plants between control check (CK) and TYLCV infected samples. Our analysis suggested that lncRNAs likely played a role in a variety of functions, including plant hormone signaling, protein processing in the endoplasmic reticulum, RNA transport, ribosome function, photosynthesis, glulathione metabolism, and plant-pathogen interactions. Using virus-induced gene silencing (VIGS) analysis, we found that reduced expression of the lncRNA S-slylnc0957 resulted in enhanced resistance to TYLCV in susceptible tomato plants. Moreover, we identified 184 circRNAs candidates using the CircRNA Identifier (CIRI) software, of which 32 circRNAs were specifically expressed in untreated samples and 83 circRNAs in TYLCV samples. Approximately 62% of these circRNAs were derived from exons. We validated the circRNAs by both PCR and Sanger sequencing using divergent primers, and found that most of circRNAs were derived from the exons of protein coding genes. The silencing of these circRNAs parent genes resulted in decreased TYLCV virus accumulation. In this study, we identified novel lncRNAs and circRNAs using bioinformatic approaches and showed that these RNAs function as negative regulators of TYLCV infection. Moreover, the expression patterns of lncRNAs in susceptible tomato plants were different from that of resistant tomato plants, while exonic circRNAs expression positively associated with their respective protein coding genes. This work provides a foundation for elaborating the novel roles of lncRNAs and circRNAs in susceptible tomatoes following TYLCV infection.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 29%
Student > Master 6 12%
Researcher 6 12%
Student > Doctoral Student 4 8%
Other 3 6%
Other 7 13%
Unknown 11 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 31 60%
Biochemistry, Genetics and Molecular Biology 7 13%
Veterinary Science and Veterinary Medicine 1 2%
Mathematics 1 2%
Immunology and Microbiology 1 2%
Other 0 0%
Unknown 11 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 June 2018.
All research outputs
#17,978,863
of 23,088,369 outputs
Outputs from BMC Plant Biology
#1,908
of 3,287 outputs
Outputs of similar age
#238,495
of 329,877 outputs
Outputs of similar age from BMC Plant Biology
#30
of 56 outputs
Altmetric has tracked 23,088,369 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,287 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,877 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 56 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.