↓ Skip to main content

Co-aggregation of pro-inflammatory S100A9 with α-synuclein in Parkinson’s disease: ex vivo and in vitro studies

Overview of attention for article published in Journal of Neuroinflammation, June 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • High Attention Score compared to outputs of the same age and source (84th percentile)

Mentioned by

news
1 news outlet
twitter
3 X users

Citations

dimensions_citation
54 Dimensions

Readers on

mendeley
98 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Co-aggregation of pro-inflammatory S100A9 with α-synuclein in Parkinson’s disease: ex vivo and in vitro studies
Published in
Journal of Neuroinflammation, June 2018
DOI 10.1186/s12974-018-1210-9
Pubmed ID
Authors

Istvan Horvath, Igor A. Iashchishyn, Roman A. Moskalenko, Chao Wang, Sebastian K. T. S. Wärmländer, Cecilia Wallin, Astrid Gräslund, Gabor G. Kovacs, Ludmilla A. Morozova-Roche

Abstract

Chronic neuroinflammation is a hallmark of Parkinson's disease (PD) pathophysiology, associated with increased levels of pro-inflammatory factors in PD brain tissues. The pro-inflammatory mediator and highly amyloidogenic protein S100A9 is involved in the amyloid-neuroinflammatory cascade in Alzheimer's disease. This is the first report on the co-aggregation of α-synuclein (α-syn) and S100A9 both in vitro and ex vivo in PD brain. Single and sequential immunohistochemistry, immunofluorescence, scanning electron and atomic force (AFM) microscopies were used to analyze the ex vivo PD brain tissues for S100A9 and α-syn location and aggregation. In vitro studies revealing S100A9 and α-syn interaction and co-aggregation were conducted by NMR, circular dichroism, Thioflavin-T fluorescence, AFM, and surface plasmon resonance methods. Co-localized and co-aggregated S100A9 and α-syn were found in 20% Lewy bodies and 77% neuronal cells in the substantia nigra; both proteins were also observed in Lewy bodies in PD frontal lobe (Braak stages 4-6). Lewy bodies were characterized by ca. 10-23 μm outer diameter, with S100A9 and α-syn being co-localized in the same lamellar structures. S100A9 was also detected in neurons and blood vessels of the aged patients without PD, but in much lesser extent. In vitro S100A9 and α-syn were shown to interact with each other via the α-syn C-terminus with an apparent dissociation constant of ca. 5 μM. Their co-aggregation occurred significantly faster and led to formation of larger amyloid aggregates than the self-assembly of individual proteins. S100A9 amyloid oligomers were more toxic than those of α-syn, while co-aggregation of both proteins mitigated the cytotoxicity of S100A9 oligomers. We suggest that sustained neuroinflammation promoting the spread of amyloidogenic S100A9 in the brain tissues may trigger the amyloid cascade involving α-syn and S100A9 and leading to PD, similar to the effect of S100A9 and Aβ co-aggregation in Alzheimer's disease. The finding of S100A9 involvement in PD may open a new avenue for therapeutic interventions targeting S100A9 and preventing its amyloid self-assembly in affected brain tissues.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 98 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 98 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 15 15%
Student > Ph. D. Student 14 14%
Researcher 13 13%
Student > Master 8 8%
Professor > Associate Professor 5 5%
Other 12 12%
Unknown 31 32%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 18%
Medicine and Dentistry 11 11%
Neuroscience 10 10%
Agricultural and Biological Sciences 6 6%
Pharmacology, Toxicology and Pharmaceutical Science 4 4%
Other 10 10%
Unknown 39 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 August 2018.
All research outputs
#2,923,123
of 23,088,369 outputs
Outputs from Journal of Neuroinflammation
#482
of 2,661 outputs
Outputs of similar age
#61,958
of 329,877 outputs
Outputs of similar age from Journal of Neuroinflammation
#12
of 77 outputs
Altmetric has tracked 23,088,369 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,661 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,877 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 77 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 84% of its contemporaries.