↓ Skip to main content

Effect of the nematophagous fungus Pochonia chlamydosporia on soil content of ascarid eggs and infection levels in exposed hens

Overview of attention for article published in Parasites & Vectors, May 2018
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effect of the nematophagous fungus Pochonia chlamydosporia on soil content of ascarid eggs and infection levels in exposed hens
Published in
Parasites & Vectors, May 2018
DOI 10.1186/s13071-018-2898-1
Pubmed ID
Authors

Sundar Thapa, Stig M. Thamsborg, Rui Wang, Nicolai V. Meyling, Tina S. Dalgaard, Heidi H. Petersen, Helena Mejer

Abstract

The nematophagous fungus Pochonia chlamydosporia can degrade ascarid (e.g. Ascaridia galli) eggs in agar and soil in vitro. However, it has not been investigated how this translates to reduced infection levels in naturally exposed chickens. We thus tested the infectivity of soil artificially contaminated with A. galli (and a few Heterakis gallinarum) eggs and treated with P. chlamydosporia. Sterilised and non-sterilised soils were used to examine any influence of natural soil biota. Unembryonated eggs were mixed with sterilised (S)/non-sterilised (N) soil, either treated with the fungus (F) or left as untreated controls (C) and incubated (22 °C, 35 days) to allow eggs to embryonate and fungus to grow. Egg number in soil was estimated on days 0 and 35 post-incubation. Hens were exposed to the soil (SC/SF/NC/NF) four times over 12 days by mixing soil into the feed. On day 42 post-first-exposure (p.f.e.), the hens were euthanized and parasites were recovered. Serum A. galli IgY level and ascarid eggs per gram of faeces (EPG) were examined on days -1 and 36 (IgY) or 40 p.f.e. (EPG). Egg recovery in SF soil was substantially lower than in SC soil, but recovery was not significantly different between NF and NC soils. SF hens had a mean worm count of 76 whereas the other groups had means of 355-453. Early mature/mature A. galli were recovered from SF hens whereas hens in the other groups harboured mainly immature A. galli. Heterakis gallinarum counts were low overall, especially in SF. The SF post-exposure IgY response was significantly lower while EPG was significantly higher compared to the other groups. Pochonia chlamydosporia was very effective in reducing ascarid egg numbers in sterilised soil and thus worm burdens in the exposed hens. However, reduced exposure of hens shifted A. galli populations toward a higher proportion of mature worms and resulted in a higher faecal egg excretion within the study period. This highlights a fundamental problem in ascarid control: if not all eggs in the farm environment are inactivated, the resulting low level infections may result in higher contamination levels with associated negative long-term consequences.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 30%
Student > Master 5 19%
Student > Bachelor 2 7%
Student > Ph. D. Student 2 7%
Student > Doctoral Student 1 4%
Other 3 11%
Unknown 6 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 30%
Veterinary Science and Veterinary Medicine 4 15%
Medicine and Dentistry 3 11%
Immunology and Microbiology 3 11%
Biochemistry, Genetics and Molecular Biology 2 7%
Other 0 0%
Unknown 7 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 June 2018.
All research outputs
#20,520,426
of 23,088,369 outputs
Outputs from Parasites & Vectors
#4,896
of 5,521 outputs
Outputs of similar age
#290,614
of 331,257 outputs
Outputs of similar age from Parasites & Vectors
#142
of 158 outputs
Altmetric has tracked 23,088,369 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,521 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,257 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 158 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.